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Abstract
Morse theory is a way to see the topology of given manifold by analyz-

ing a function on the manifold. In this note, we give brief overview on the
Morse theory. In section 1, we introduce the basic ideas of Morse theory.
In section 2, we introduce the construction of Morse homology. In section
3, we give an example of infinite dimensional analogy of Morse function,
which is the energy functional on the path space of manifold. We hope
that this note would help to read the note on Floer homology, which will
be uploaded in the future.

A nice reference for Morse theory is a beautiful book of John Milnor,
[Mil1]. I also found that [Mat] was helpful. There’s also some stuffs
concerning with Morse homology in the first few chapters of [AD].
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1 Morse Functions

1.1 Motivating Example: Height Function on the Surfaces
In this note, every manifold and function is assumed to be smooth. If there’s

a subtlety, for example a manifold with corners, we will usually ignore the
problem since such problem can be somehow solved.

Consider the sphere, torus and genus 2 surface embedded in R3 as in the
Figure 1. Denote these by S0, S1, S2. Define hi : Si → R by h(x, y, z) = z,
which could be seen as a height functions on the surfaces. One can easily check
that h0, h1, h2 has 2, 4, 6 critical points each. For example, the function on
a sphere has global minimum and maximum, which correspond to two critical
points.

Figure 1: Height Functions on Surfaces

Consider the sublevel set h−1(−∞, c] := Sc. (We omit the subscript for
now.) Then one can see that the topology of sublevel set does not change as c
passes through regular values, and it changes at critical values. For example,
let’s see the torus case. The critical values are 0, 1, 2 and 3. We see that, as
illustrated in Figure 2,

• If c < 0, Sc is an empty set.

• If 0 < c < 1, Sc is a disk.

• If 1 < c < 2, Sc is a cylinder.

• If 2 < c < 3, Sc is a torus with a puncture.

• If c > 3, Sc is a torus.

This looks like attaching cells to CW complex, which describes the topology of
given manifold.

Let’s see one more case with 4 critical points, so called a Morse heart. This
could be seen as a sphere, which is deformed a bit from its standard form. The
critical values are 0, 1, 2 and 3. We see that, as illustrated in Figure 3,

• If c < 0, Sc is an empty set.
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Figure 2: Sublevel sets of 2-torus

• If 0 < c < 1, Sc is a disk.

• If 1 < c < 2, Sc is a cylinder.

• If 2 < c < 3, Sc is a sphere with a puncture (which is a disk).

• If c > 3, Sc is a sphere.

Figure 3: Sublevel sets of Morse heart

What made the difference between two cases? Denote the critical points
corresponds to the critical value i by pi and qi in torus and Morse heart. One
can easily check that p0 is local minimum, p1, p2 are saddle points, and p3 is
local maximum. In contrast, in the Morse heart case, q0 is local minimum,
q1 is saddle point, and q2, q3 are local maxima. This local behavior of height
functions near critical points make difference between torus and sphere.
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Here’s the idea: we can see the topology of M by analyzing the behavior of
some function f on M near its critical points. This is the starting point of the
Morse theory.

1.2 Morse Functions
Let f : M → R. Recall that the critical point of f is a point p ∈ M such

that dpf = 0. In local chart (x1, · · · , xn), we can write this condition as

∂f

∂x1
(p) = · · · = ∂f

∂xn
= 0.

We call f(p) critical value. At critical point p, dpf does not contain valuable
information of f . Reminiscing the Calculus II course, we would like to see the
second derivatives at the critical points to extract more information.

Let Crit(f) be the set of critical points of f . For p ∈ Crit(f), define Hessian
of f at p by n × n-matrix

Hessp(f) :=
(

∂2f

∂xi∂xj
(p)

)
in local chart. In particular, Hessp(f) is symmetric and thus defines a symmetric
bilinear form on TpM . This matrix describes the local behavior of f near the
critical point.

Remark 1.1. Of course, there’s a coordinate-free description of Hessian. We
would not concern about this. One can look [Mil1] for the definition.

There are standard notions associated to symmetric bilinear form A defined
on a real vector space V :

• A can be naturally identified to a map Ã : V → V ∗ by defining Ã(v)(w) =
A(v, w). If ker Ã = 0, we say A is nondegenerate. Otherwise, we say A
is degenerate. We usually write ker A = ker Ã.

• A is positive definite if A(v, v) > 0 for any 0 ̸= v ∈ V . Similarly, A is
negative definite if A(v, v) < 0 for any 0 ̸= v ∈ V .

• Index of A is an integer Ind(A) := dim V−, where V− is maximal subspace
of V on which A is negative definite.

Let’s apply these notions to the Hessian. We call f : M → R Morse function
if it’s proper (the inverse image of compact set is compact) and Hessp(f) is
nondegenerate for any p ∈ Crit(f). For Morse function f , define Morse index
of p by

Ind(p, f) = Ind(p) := Ind(Hessp(f)).

One might check that these definitions do not depend on the choice of local
chart which represents Hessian.
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Let’s see what exactly the nondegeneracy assumption means. The nondegen-
eracy means, heuristically, the critical points are isolated. Assume that v ∈ TpM
is degenerate direction of f at p, so that Hessp(v, w) = 0 for any w ∈ TpM . For
example, let’s identify TpM with Rn and take v = e1 which is standard basis
of Rn, and other basis by ej . It means that ∂2

1jf(0) = 0 for any j, and one can
expect that for small ε > 0, ∂jf(±εe1) = 0, i.e. ±εe1 is also a critical point of
f . The situation is illustrated in Figure 4. We want to avoid such situation,
since in this case even Hessp(f) cannot catch the behavior of f near p, as the
reason we used Hessian instead of dpf .

Figure 4: Degenerate critical points

There is an existence theorem for Morse function, so we don’t have to concern
about the degeneracy of our functions for now.

Theorem 1.2. On any manifold M , there exists a Morse function f . Moreover,
Morse functions are generic; the set of Morse functions is open dense subset in
C∞(M,R) under appropriate topology.

Proof. See Section 6 of [Mil1], or Theorem 2.7 of [Mil2].

1.3 Morse Lemma and Cell Decomposition
Here’s a basic lemma which describes our observation in the previous sections

clearly.

Lemma 1.3 (Morse Lemma). Let f : M → R be Morse, and M c := f−1(−∞, c].

1. If there’s no critical value between a and b, Ma and M b are diffeomorphic.

2. Let p ∈ Crit(f), Ind(p, f) = k. Moreover, assume that there’s no critical
point other than p in the set f−1[c − ε, c + ε]. Then M c+ε has homotopy
type of M c−ε with a k-cell attached.

Sketch of Proof. 1. Let a < b. Consider the gradient vector field gradf defined
by f at the boundary of Ma, which is f−1(a). Such vector field is defined by
an equation

⟨gradf, Y ⟩ = df(Y ) = Y (f)
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where ⟨−, −⟩ is some Riemannian metric on M . Since f is increasing, gradf
is outward at the boundary. Also, gradf is nonvanishing on f−1[a, b], since
gradf(p) = 0 iff dpf = 0. The integral flow of gradf defines desired diffeomor-
phism. In fact, this is a deformation retraction.

2. Let Ind(p) = k. We can take chart near p, say (x1, · · · , xn), on which f
is represented by

f(x1, · · · , xn) = c − x2
1 − · · · − x2

k + x2
k+1 + · · · + x2

n.

This means, if we consider f as a height function, there are k directions which
go downward and (n − k) directions which go upward near p. Figure 5 is the
illustration of such picture in 2-dimensional case.

We can ignore the upward directions, since they do not touch the manifold
M c−ε and thus can be homotoped out. So we only need to consider the down-
ward direction, which are attached to M c−ε, and has dimension k. Intuitively,
the chart described above is a k-cell attached to M c−ε. For detailed proof, see
Theorem 3.2 of [Mil1].

Figure 5: Critical points of index 0,1,2 in dimension 2

This is simple but powerful result, which is at the heart of Morse theory.
Note that even if there are many critical points with same critical value, the
cell-attaching argument of the above lemma is still valid since the process is local
and our critical points are assumed to be discrete. Here’s a direct consequence
of above results.

Corollary 1.4. Every smooth manifold is homotopy equivalent to some CW
complex.

Here’s a familiar example which could be computed explicitly.

Example 1.5 (Morse Function of Complex Projective Space). Let M = CPn,
a n-dimensional complex projective space. Our convention is CPn = S2n+1/C∗

where S2n+1 ⊂ Cn+1, so we can use all coordinates normalized.

CPn =
{

[z0, · · · , zn] :
∑

|zi|2 = 1
}

.

Now define Morse function f on CPn by

f([z0, · · · , zn]) =
∑

i|zi|2.
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This is well-defined, since the other choices of [z0, · · · , zn] are [cz0, · · · , czn]
where c ∈ S1 ⊂ C. Use the standard coordinate chart

Uj = {[z] ∈ CPn : zj ̸= 0} ≃ Cn = {(w0, · · · , 0, · · · , wn)} ⊂ Cn+1,

[z0, · · · , zn] 7→
(

z0

zj
, · · · ,

ẑj

zj
, · · · ,

zn

zj

)
Here ẑ means the coordinate is zero. In this chart, we can find |zj |2 since
1 +

∑
i̸=j |wi|2 = (

∑
|zi|2)/|zj |2 = 1/|zj |2, i.e. |zj |2 = 1/(1 +

∑
i ̸=j |wi|2). Now

our f has the form

f(w0, · · · , wn) =
∑

i|zi|2 =

j +
∑
i ̸=j

i|wi|2
 |zj |2

=
j +

∑
i ̸=j i|wi|2

1 +
∑

i≠j |wi|2
.

Using ∂/∂wk, we can find that

∂f

∂wk
= kw̄k(1 +

∑
|wi|2) − (j +

∑
i|wi|2)w̄k

(1 +
∑

|wi|2)2

= w̄k((k − j) +
∑

(k − i)|wi|2)
(1 +

∑
|wi|2)2

and similar for ∂f/∂w̄k. Now it’s straightforward that the origin is unique
critical point of f in Uj .

By taking Hessian of the function and put the origin in it, it turns out that
every term is zero except

∂2f

∂wk∂w̄k
= k − j.

It means that, the Hessian is negative definite on the subspace of T0Uj generated
by ∂/∂wk, ∂/∂w̄k if k < j. Thus we find that Ind(0, f) = 2j where 0 ∈ Uj .

We have coordinate charts U0, · · · , Un for CPn. Denote the corresponding
points of CPn to the origin of Uj by p0, · · · , pn. Such pj ’s are only critical
points of f , and Ind(pj) = 2j. Now we can see that there are one 2j-cell for
each j = 0, · · · , n, which corresponds to the well-known CW structure of CPn;
one cell in each even dimension.

1.4 Morse Inequalities
We introduce a direct consequence of our analysis on the Morse functions.

First, it’s a well-known fact that we can make our Morse function self-indexing
by perturbing a bit, so that for each p ∈ Crit(f), f(p) = Ind(p, f). See Lemma
2.8. of [Mil2] for some discussion. If we take self-indexing Morse function, it’s
convenient to write out its cell structure. For example, let k ∈ Z≥0 and consider
self-indexing Morse function f : M → R. Again, denote M c = f−1(−∞, c].
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Then our Lemma 1.3. tells us that Mk+1/2 is homotopy equivalent to Mk−1/2

with k-cells attached, and the number of k-cells is equal to the number of critical
points of index k. If we denote

Ck = Ck(f, M) := #{p ∈ Crit(f) : Ind(p, f) = k},

then we have following.

Hk(Mk+1/2, Mk−1/2) ≃ Hk(∪Ck
ek, ∪Ck

ėk;Z) ≃ Z⊕Ck .

The first isomorphism is induced by excision of homology.
Mk+1/2 is k-skeleton of M , and thus Hk(Mk+1/2, Mk−1/2) are the chain

groups of cellular homology of M , and we know that it is isomorphic to the
singular homology. Let bk(M) := rankHk(M) be the k-th Betti number of
M . Then χ(M) :=

∑
(−1)kbk(M) is Euler characteristic of M . From the

above, we have following.

Proposition 1.6 (Weak Morse Inequality).

bk(M) ≤ Ck(f, M),
∑

(−1)kCk(f, M) = χ(M).

Notice that the number Ck depends on the choice of a Morse function f . It
means that the topology of M gives the lower bound of the number of critical
points of f , assumed that f is a Morse function. (If f is not Morse, this bound
might not hold.)

For stronger result, we need some algebraic notions. We call function S
assigns a pair of topological spaces (X, Y ) (that is, Y ⊂ X) to Z is subadditive
if for Z ⊂ Y ⊂ X,

S(X, Z) ≤ S(X, Y ) + S(Y, Z).

If the equality holds, we say S is additive. For example, our Betti number
bk(X, Y ) = rankHk(X, Y ) is subadditive and χ(X, Y ) =

∑
(−1)kbk(X, Y ) is

additive. One can easily check by induction that if a function S is subadditive
and X0 ⊂ · · · ⊂ Xn, then S(Xn, X0) ≤

∑
S(Xi, Xi−1).

Lemma 1.7. Define Sk by following, then Sk is subadditive.

Sk(X, Y ) =
∑

(−1)ibk−i(X, Y ) = bk(X, Y ) − bk−1(X, Y ) + · · · ± b0(X, Y ).

Proof. Consider the long exact sequence of triple (X, Y, Z),

· · · Hk+1(X, Z) Hk+1(X, Y ) Hk(Y, Z) · · · 0.∂

By exactness, we have

rank∂ = bk(Y, Z) − bk(X, Z) + bk(X, Y ) − bk−1(Y, Z) + · · · ± b0(X, Y ) ≥ 0.

Collecting terms by pair, we have desired result.
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Now we apply this lemma to get the Morse inequality.

Theorem 1.8 (Morse Inequality). For any k, we have

bk(M) − bk−1(M) + · · · ± b0(M) ≤ Ck(f) − Ck−1(f) + · · · ± C0(f).

Proof. From Sk we’ve defined above, we have

Sk(M) ≤
k∑

i=1
Sk(M i+1/2, M i−1/2) = Ck − Ck−1 + · · · ± C0.

The result follows.

From the above inequality, we can easily deduce the following.

Corollary 1.9. Let f : M → R be a Morse function.

1. If Ck = 0, then bk = 0.

2. If Ck+1 = Ck−1 = 0, then Ck = bk.

Finally, we note the most trivial inequality which can be deduced directly
from the fact that Crit(f) corresponds to the k-cells in M .

Theorem 1.10. Crit(f) ≥
∑

rankHk(M).

This is rather easy to see, but it generalizes to the famous conjecture of
Arnold.

Conjecture 1 (Arnold, now is a theorem). Let M be a compact symplectic
manifold and H : M × R → R be a time-dependent Hamiltonian, whose period
1 orbits are all nondegenerate. Denote O(H) for such orbits, then

#O(H) ≥
∑

rankHk(M).

Let’s just ignore the complicated notions in the statement for now. The
Hamiltonian orbits, which is a periodic trajectory of some vector field XH gen-
erated by H, can be viewed as a critical point of action functional defined on
the loop space of M . If H is C2-small Hamiltonian, then we can show that
there is no time-dependent periodic orbit of XH . Time-independent orbit of
XH corresponds to the critical point of H, so it means that O(H) = Crit(H).
Then the problem degenerates into the last inequality. However, we cannot
solve the problem if H is large for now, even if we understand every notion in
the statement clearly. This is the starting point of Floer theory.
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2 Morse Homology
In this section, we introduce the construction of Morse complex with Z/2Z-

coefficient, and define the Morse homology. The theory might be rather easy
to understand, but the underlying idea is very important and useful. The main
idea is following.

1. Generate the chain groups with critical points of f .

2. Assign Morse index for each chain, so that CM∗ becomes a graded module.

3. Define ∂ by counting Morse trajectories connecting two critical points.

4. Show that ∂2 = 0, and get homology.

The Morse homology can be seen as finite dimensional prototype for many
complicated homology theory, for example Floer homology. The main reference
for this section is Section 2,3 of [AD].

2.1 Stable and Unstable Manifolds
From now, we assume that M is closed. Let f : M → R be a Morse function

and Flt−gradf (p) = φt(p) be the negative gradient flowline. (This convention
of sign is traditional, I guess.) We define stable manifolds and unstable
manifolds as follows. Let p ∈ Crit(f).

W s(p) =
{

q ∈ M : lim
t→∞

φt(q) = p
}

,

W u(p) =
{

q ∈ M : lim
t→−∞

φt(q) = p

}
.

If q ∈ W s(p), then the flowline through q tends to go into p, while if q ∈
W u(p), the flowline tends to escape from p. This explains the names, stable
and unstable. It’s natural to expect that for any q, φt(q) tends to a critical
point, at least when M is closed. See Proposition 2.1.6 of [AD] for detailed
proof. Figure 6 illustrates the stable and unstable manifolds of Morse heart.

Remark 2.1. If M is not closed, there are two cases come in mind such that
φt(q) does not converge. First, consider the height function on a half-infinite
cylinder with end homeomorphic to a hemisphere. Then φt(q) can escape to
infinity. Secondly, consider the manifold with boundary, for example a torus
with a disk cut out. Then φt(q) cannot be extended to t > T , for some large T .
So it’s better to assume that M is closed.

In fact, these are the cells which we attached.

Proposition 2.2. W u(p), W s(p) are submanifolds of M diffeomorphic to open
disks. Moreover, we have

dim W u(p) = codimW s(p) = Ind(p).
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Figure 6: (Intersections of) Stable and unstable manifolds of Morse heart

Sketch of Proof. Take the chart near p which we’ve taken in the proof of Lemma
1.3, so that

f(x1, · · · , xn) = c − x2
1 − · · · − x2

k + x2
k+1 + · · · + x2

n.

Then we can see that if q = (x1, · · · , xk, 0, · · · , 0), then the negative gradient
flowline will tend to p as t → −∞. Conversely, if q = (0, · · · , 0, xk+1, · · · , xn),
then the negative gradient flowline will tend to p as t → ∞. See Proposition
2.1.5 of [AD] for details.

2.2 Space of Trajectories M(p+, p−)
We’re interested in the intersections of stable and unstable manifolds. Set-

wise, we have

W u(p+) ∩ W s(p−) =
{

p ∈ M : lim
t→±∞

φs(p) = p±

}
.

As in the Morse heart figure, we can see this as an image of trajectories con-
necting p+ and p−. Recall the properties of gradf . That is,

1. gradf(p) = 0 iff p ∈ Crit(f).

2. f decreases along the flowline of −gradf , i.e. for Flt−gradf = φt,

d

dt
(f ◦ φt(p)) = −||gradf(φt(p))||2 < 0.
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Here, FltX(p) is the integral curve of X starting at p, i.e. it solves a differential
equation

dFltX
dt

= X(FltX(p)), Fl0X(p) = p.

The negative gradient flowlines are enough for previous results, but they are not
from now. We want the intersection W u(p+)∩W s(p−) to be a smooth manifold,
and it’s sufficient to assume that W u(p+) and W s(p−) intersect transversally.
But might not be the case for the gradient flowlines.

To avoid this problem, we define Smale condition on a vector field. A
vector field X satiesfies Smale condition for f if

• X is pseudo-gradient, i.e. X satisfies two properties of negative gradient
vector field stated above and X = −gradf near the critical points.

• Define W u
X and W s

X by replacing φt to FltX . Then W u
X(p+) ⋔ W s

X(p−) for
any p± ∈ Crit(f).

We have an existence theorem for Smale vector field.

Theorem 2.3 (Smale). For any Morse function f , there exists a Smale vector
field X of f which is C1-close to −gradf .

Proof. See Theorem 2.2.5 of [AD].

By definition, we have following observation, which would be critical to define
the differential of Morse complex.

Proposition 2.4. If X is Smale, W u
X(p+) ∩ W s

X(p−) is a smooth submanifold
of M of dimension Ind(p+) − Ind(p−).

Proof. If N1, N2 are transversely intersecting submanifolds of M , we have a
standard formula

codimN1 ∩ N2 = codimN1 + codimN2.

Thus we have

codimW u
X(p+) ∩ W s

X(p−) = codimW u
X(p+) + codimW s

X(p−).

Since dim W u
X(p+) = Ind(p+, f) and codimW s

X(p−) = Ind(p−, f), we get the
dimension formula.

Now assume that X is Smale, and consider W u
X(p+) ∩ W s

X(p−). We have
natural R-action on this space, defined by

t · q = φt(q).

One can easily check that this is free action (unless p+ = p−), and therefore
the quotient space of intersection by R-action is also a manifold. We define the
moduli space of trajectories by

M(p+, p−) = W u
X(p+) ∩ W s

X(p−)/R.
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If [p] = [q] in M(p+, p−), it means that p, q lie on the same trajectory. Thus
we can understand M(p+, p−) as a space of trajectories, instead of a quotient
of submanifold of M .

Corollary 2.5. For p± ∈ Crit(f), we have

• dim M(p+, p−) = Ind(p+) − Ind(p−) − 1.

• In particular, there’s no trajectory from p+ to p− if Ind(p+) < Ind(p−).
It means that the Morse index decreases along the Morse trajectory.

• If Ind(p+) = Ind(p−), M(p+, p−) = ∅ unless p+ = p−. In this case,
M(p, p) = {p} where p is the constant trajectory.

Remark 2.6. In particular, we can see that the negative gradient of height
function on T2 which we’ve given at the start of note is not Smale, since there
is a flowline between different critical points of index 1!

2.3 Compactness of M(p+, p−)
Since M(p+, p−) is a quotient of submanifold of M , there exists a natural

topology equipped on M(p+, p−). Intuitively, this could be seen as a topology
on the space of trajectories, which is a space of functions and rather hard to
deal with. We’ll not go into this topology deeply. Instead, we will discuss the
compactification of M(p+, p−) intuitively.

Figure 7: Sequence of Morse trajectories converging to a broken trajectory

Let’s see that Figure 7. This figure describes a behavior of a sequence of
trajectories (γn) connecting p2 and p0. Let’s denote γ = limn γn for now. There
is a sequence of real numbers, say (tn), such that limn γn(tn) = p1. So one
might, and should expect that p1 is in the image of γ. But it cannot happen;
once γ touches p1, then it would eternally stay at p1. Thus one can see, at least
visually, that the limit γ is not in M(p2, p0).
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To solve this problem, we introduce the notion of broken trajectory. Let
γ′ ∈ M(p2, p1), γ′′ ∈ M(p1, p0) be the trajectories in each space, marked in the
figure. We call a pair (γ′, γ′′) ∈ M(p2, p1) × M(p1, p0) a broken trajectory, and
consider this as a limit of sequence (γn).

In general, let (γn) be a sequence in M(p+, p−). Even if γn converge to
the broken trajectory, we have a rule that index decreases along the Morse
trajectory. Our candidate for the compactification of M(p+, p−) is following:

M(p, q) =
∪

Ind(pi)>Ind(pi+1)

M(p+, p1) × · · · × M(pl, p−).

Here, the union goes through all pairs of critical points (p1, · · · , pl) (with l not
fixed) such that Ind(p+) > Ind(p1) > · · · > Ind(pl) > Ind(p−). Of course,
the empty pair gives original M(p+, p−). We say (γn) in M(p+, p−) converges
to (γ(0), · · · , γ(r)) if there exists a real sequence (t(i)

n ) such that γn(t + t
(i)
n )

converges to γ(i)(t) for each i. We have following results on the compactness of
M(p+, p−).

Theorem 2.7. Let p+, p− ∈ Crit(f).

1. M(p+, p−) is compact.

2. If Ind(p+) − Ind(p−) = 1, M(p+, p−) is compact 0-manifold, i.e. a finite
set.

3. If Ind(p+) − Ind(p−) = 2, M(p+, p−) is compact 1-manifold with bound-
ary, i.e. a disjoint union of circles and closed intervals. In particular, we
have

∂M(p+, p−) =
∪

Ind(p)=Ind(p+)−1

M(p+, p) × M(p, p−).

For the proof, see Section 3.2 of [AD].

2.4 The Morse Complex (CM∗(f), ∂X)
We are now ready to define the Morse complex. Let CM∗(f) be Z/2Z-

module generated by Crit(f). Assign each p ∈ Crit(f) an index Ind(p) as degree,
so that CM∗(f) becomes a graded Z/2Z-module.

Note 2.8. We might assign orientation for each critical points and make CM∗
into Z-module. See Section 3.3 of [AD] for the discussion.

Let mX(p+, p−) = #M(p+, p−) if Ind(p+) − Ind(p−) = 1. Since M(p+, p−)
is a finite set in this case, we can count the number of elements. Define differ-
ential for each p+ ∈ Crit(f) as follows, and extend to whole module.

∂X(p+) =
∑

Ind(p−)=Ind(p+)−1

mX(p+, p−)p−.
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We’re assuming that M is closed, so there exists only finitely many critical
points. Hence the sum in the definition is finite, so well-defined. Also, by
definition, we see that ∂X is degree -1 map, i.e.

∂X : CM∗(f) → CM∗−1(f).

Theorem 2.9. ∂2
X = 0, i.e. (CM∗(f), ∂X) is a chain complex.

Proof. By definition, we have

∂2
X(p) = ∂X

 ∑
Ind(q)=Ind(p)−1

mX(p, q)q


=

∑
Ind(q)=Ind(p)−1

 ∑
Ind(r)=Ind(p)−1

mX(p, q)mX(q, r)r


mX(p, q)mX(q, r) is cardinality of M(p, q) × M(q, r). For fixed r, from the
result follows from 3. of Theorem 2.5. we have that∪

q

M(p, q) × M(q, r) = ∂M(p, r).

Moreover, M(p, r) is compact 1-manifold with boundary, so its boundary is
even points. It means that

∑
q mX(p, q)mX(q, r) = 0 modulo 2. Hence we get

the result.

Hence we can define Morse homology by

HM∗(M ; f, X) = ker ∂X/im∂X .

Note 2.10. In fact, HM∗(M ; f, X) is isomorphic to the singular homology of
M . The idea comes from Section 1 of this note. A critical point of index k
correspond to k-cell, and the trajectory corresponds to the attaching map of
k-cell to (k − 1)-cells. So it could be identified with cellular homology, which is
isomorphic to the singular homology. See Section 4.9 of [AD] for the discussion.

Example 2.11. Let’s see that Morse heart picture Figure 6 again. We have
Ind(p3) = Ind(p2) = 2, Ind(p1) = 1 and Ind(p0) = 0. Thus CM2 = Z/2Z(p3, p2),
CM1 = Z/2Z(p1) and CM0 = Z/2Z(p0). Let’s see the flowlines between the
critical points with index difference 1. We see that there is 2 from p1 to p0 and
1 from p3, p2 to p1 each. And there is no other one. It means that, our chain
complex is

Z/2Z ⊕ Z/2Z Z/2Z Z/2Z(−)+(−) 2(−)

One can easily see that HM2(M) = Z/2Z, HM1(M) = 0, HM0(M) = Z/2Z.
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2.5 Independence of HM∗

In this subsection, we will see that HM∗ is independent of the choice of a
Morse function f and the choice of Smale vector field X. The idea is originally
from Floer, and detailed proof is in Section 3.4 of [AD].

Let’s call the pair (f, X) of a Morse function f and a Smale vector field X a
Morse pair (which is not standard notion). Let (f0, X0) and (f1, X1) be Morse
pairs.

Theorem 2.12. HM∗(f0, X0) and HM∗(f1, X1) are isomorphic.

For this, we have several steps.

1. Choose a function F : M × [0, 1] → R such that F (−, t) = f0 for 0 ≤ t < ε,
and F (−, 1) = f1 for 1−ε < t ≤ 1. It’s known that such F could be chosen
as a Morse function on M × [0, 1]. We call this homotopy from f0 to f1.

2. Define a chain map with such F ,

ΦF : (CM∗(f0), X0) → (CM∗(f1), X1)

so that ΦF induces a map on homology level.

3. For f̃ : M × [0, 1] → R such that f̃(x, t) = f(x) for any t, Φf̃ = IdCM∗(f).

4. For homotopy G from f1 to f2 and H from f0 to f2, we have

(ΦG ◦ ΦF )∗ = ΦH
∗

Here, ΦF
∗ is induced map on homology.

If these are shown, then the result easily follows. As F −1 defined by F −1(−, t) =
F (−, 1 − t) is homotopy from f1 to f0, and f̃ is homotopy from f0 to f1, we
have from 3 and 4 that

ΦF −1

∗ ◦ ΦF
∗ = Φf̃0

∗ = Id

and similar result in the opposite direction. It means that ΦF
∗ is isomorphism

on homology, which gives us desired result.

Sketch of Proof. (See Section 3.4. of [AD].) First, we can add some function
g : R → R which has 0 as local maximum and 1 as local minimum to the
extended F : M × [−1, 2] → R, so that for F = F + g,

Crit(F ) = Crit(f0) × {0} ∪ Crit(f1) × {1}.

Here, g controls the ill-bahavior of F between 0 and 1, which cannot be pre-
dicted. We build a Morse complex with M × [−1, 2] and F . We can see that
Ind((p, 0), F ) = Ind(p, f0) + 1 and Ind((p, 1), F ) = Ind(p, f1). It means that

CMk+1(F ) = CMk(f0) ⊕ CMk+1(f1).
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Choose nice X on M × [−1, 2] so that (F, X) becomes a Morse pair. Our Morse
differential becomes

∂X : CMk(f0) ⊕ CMk+1(f1) → CMk−1(f0) ⊕ CMk(f1).

In matrix form, we have

∂X =
(

∂X0 0
ΦF ∂X1

)
The (1,2)-term is zero because of index difference, and ΦF is given by

ΦF : CMk(f0) → CMk(f1)

p 7→
∑

q∈CMk(f1)

mX(p, q)q

where mX(p, q) = #M̄(p, q) is number of trajectories in M × [−1, 2] connecting
p and q. Since ∂2

X = 0, we have

ΦF ◦ ∂X0 + ∂X1 ◦ ΦF = 0,

i.e. ΦF is a chain map. With this definition, one can easily show that Φf̃ = Id.
Similarly, we can make K : M × [−1, 2] × [−1, 2] → R which connects F, G

and H, and
Crit(K) =Crit(f0) × {(0, 0)} ∪ Crit(f1) × {(1, 0)}

∪ Crit(f2) × {(0, 1)} ∪ Crit(f2) × {(1, 1)}

where the indices are given by
Ind((p, 0, 0), K) = Ind(p, f0) + 2,

Ind((p, 1, 0), K) = Ind(p, f1) + 1,

Ind((p, 0, 1), K) = Ind(p, f2) + 1,

Ind((p, 1, 1), K) = Ind(p, f2).

It means CMk+1(K) = CMk−1(f0) ⊕ CMk(f1) ⊕ CMk(f2) ⊕ CMk+1(f2), and
with appropriate choice of X we have

∂X =


∂X0 0 0 0
ΦF ∂X1 0 0
ΦH 0 ∂X2 0
S ΦG Id ∂X2


Again, by ∂2

X = 0, we have that

ΦG ◦ ΦF + ΦH + S ◦ ∂X0 + ∂X2 ◦ S = 0.

Thus, the map S is a chain homotopy between ΦG ◦ ΦF and ΦH .

Considering F as a Morse function on M × [0, 1] is the main point of the
proof. With this point of view, the Morse differential gives us chain map with
desired properties. This idea apply almost similarly with some difference in
technical details in the parallel statement for Floer homology.
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3 The Energy Functional on Path Spaces
In this section, we introduce the infinite dimensional analogy of Morse the-

ory. The manifold M will be replaced by its path space PM or loop space ΩM ,
and the Morse function would be given by energy functional. Even though there
are many technical difficulties, the idea of Morse theory still can be applied. The
main reference for this section is Part III of [Mil1].

Remark. Honestly, I realized that this section is nothing more than a summary
of Part III of [Mil1] after the writing is done. Please understand me, since John
Milnor is the best writer who I know in mathematics.

3.1 Differentiation on the Path Spaces
Let p, q ∈ M . Define the path space of M connecting p, q by

PM(p, q) = PM := {γ : [0, 1] → M | γ(0) = p, γ(1) = q, γ is piecewise smooth}

The loop space based on p is ΩM(p) = ΩM := PM(p, p). One might mind
defining such space with piecewise smooth curves, but we have enough reason to
do so. We can give smooth structure on PM , but we’ll not go into it. Instead,
we just see how to differentiate the functions on PM .

First, let f : M → R. Recall that, on smooth manifolds, we defined direc-
tional derivative at p ∈ M by taking a path α : (−ε, ε) → M such that α(0) = p,
α̇(0) = v and define

dpf(v) = d

dt

∣∣∣∣
0

f ◦ α(t).

Here, v is tangent vector and it could be defined as an equivalence class (germ)
of paths at p.

The same thing works in infinite dimension. Let α : (−ε, ε) → PM be a path
such that α(0) = γ, dα/ds(0) = X. Here, α could also be seen as a function

α : (−ε, ε) × [0, 1] → M

(s, t) 7→ α(s)(t)

where α(0, t) = γ(t) and α(s, 0) = p, α(s, 1) = q for any s. We call such
α variation of γ. Our tangent vector X = Xt is vector field along γ which
vanishes at the endpoints, since we have that

d

ds

∣∣∣∣
0

α(s, t) ∈ Tγ(t)M.

Hence, we might define TγPM as a space of piecewise smooth vector fields along
γ. Figure 8 explains that why this definition makes sense.

Now let F : PM → R be a functional. (Functional is nothing but a function
on the infinite dimensional space.) Then we define the differential by

dpF (X) = d

ds

∣∣∣∣
0

F ◦ α(0, s).
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Figure 8: Analogy of tangent spaces of M and PM

As before, we call γ is critical path of F if dpF (X) = 0 for any X ∈ TγPM .
Of course, we cannot say dpF (X) is defined for every F , but the functional we
will use is differentiable.

3.2 Critical Points of Energy Functional E : Geodesics
From now, we assume that M is a closed n-manifold. Equip a Riemannian

metric ⟨−, −⟩ on M . Then we can define energy functional for γ ∈ PM

E(γ) = 1
2

∫ 1

0
⟨γ̇, γ̇⟩dt.

We can easily check that E : PM → R, E(γ) ≥ 0 and E(γ) = 0 iff γ is a
constant path. The critical points of E would be interesting for us, as we’ll see.
The factor 1/2 is traditional; it came from the notion of kinetic energy in the
physics. It also makes our formulas look better, except the next one.

Define length functional L : PM → R by

L(γ) =
∫ 1

0
⟨γ̇, γ̇⟩1/2dt.

By Schwarz inequality, we have

L(γ)2 ≤
∫ 1

0
dt ·

∫ 1

0
⟨γ̇, γ̇⟩dt = 2E(γ)

and the equality holds iff ⟨γ̇, γ̇⟩ is constant, i.e. γ has constant speed.
We say γ is a geodesic if it is smooth and has constant speed. We can

show that if γ is a geodesic, then it’s locally length-minimizing; for small ε > 0,
we have L(γ|[0,ε]) = d(γ(0), γ(ε)). If γ is globally length-minimizing, we call γ
minimizing geodesic. Now assume that γ′ is a minimizing geodesic from p to
q. Then we have

2E(γ′) = L(γ′)2 ≤ L(γ)2 ≤ 2E(γ).
We can easily see that L(γ′) = L(γ) iff γ is also a (re-parametrized) minimizing
geodesic and L(γ)2 = 2E(γ) iff γ has a constant speed. Thus we have following.
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Lemma 3.1. The minimizing geodesic γ from p to q is a minimum point of E
on PM(p, q). The corresponding minimum value is d(p, q)2/2.

We can expect that the minimizing geodesics are actually a critical paths of
E, and it is actually true. In fact, not only minimizing geodesics but also any
geodesics are the critical paths of E.

Theorem 3.2 (First Variation Formula). Let X ∈ TγPM , and define for non-
smooth point t of γ, ∆tγ̇ = γ̇(t+) − γ̇(t−). Then,

dγE(X) = −
∑

t

⟨Xt, ∆tγ̇⟩ −
∫ 1

0
⟨Xt, γ̈(t)⟩dt.

One can (and might have been) find similar statement in elementary differ-
ential geometry books.

Proof. Let α be a variation related to X. Then,

dE(α(s, t))
ds

= d

ds

(
1
2

∫ 1

0

⟨
∂α

∂t
,

∂α

∂t

⟩
dt

)
=

∫ 1

0

⟨
∂

∂s

∂α

∂t
,

∂α

∂t

⟩
dt

=
∫ 1

0

⟨
∂

∂t

∂α

∂s
,

∂α

∂t

⟩
dt

=
∫ 1

0

∂

∂t

⟨
∂α

∂s
,

∂α

∂t

⟩
dt −

∫ 1

0

⟨
∂α

∂s
,

∂

∂t

∂α

∂t

⟩
dt

=
∑

i

⟨
∂α

∂s
,

∂α

∂t

⟩ti−

ti+1+
−

∫ 1

0

⟨
∂α

∂s
,

∂

∂t

∂α

∂t

⟩
= −

∑
i

⟨
∂α

∂s
, ∆ti

∂α

∂t

⟩
−

∫ 1

0

⟨
∂α

∂u
,

∂

∂t

∂α

∂t

⟩
dt.

where t1, · · · , tk are the non-smooth points of γ. Put s = 0 to get the formula
in the statement.

This formula characterizes the critical points of E completely. Recall that
γ is critical path of E iff dγE(X) = 0 for any X. If γ is a critical path, one
must have ∆tγ̇ = 0 for any t. It means that γ̇ has no discontinuity, hence γ is
smooth. Also, one must have γ̈ = 0, i.e. γ has constant speed. In short, we
have following.

Corollary 3.3. Crit(E) is a set of geodesics.

Note 3.4. Such method is often called calculus of variation. It’s very useful,
for example one can deduce the celebrated Euler-Lagrange equation

d

dt

∂L
∂ẋ

= ∂L
∂x

exactly in the same way.
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Remark 3.5. In the proof, we didn’t use the exact terminology of differentia-
tion on manifolds. That is, we need to use covariant derivative (which is usually
denoted by D/ds, etc.) to differentiate the things on manifolds. What we wrote
down is rather a local form. I hope this would be enough to understand the
idea.

3.3 Hessian of E : Second Variation Formula
Since we’ve found the critical points of E, we have to see the Hessian of E at

the geodesics γ to apply our Morse theory on (PM, E). As before, we can define
the second derivative of E on PM by using two-dimensional variation. Let
X, Y ∈ TγPM , i.e. vector fields along γ, and α : (−ε, ε)× (−ε, ε)× [0, 1] → PM
be a function such that

α(0, 0, t) = γ(t), ∂α

∂s1
(0, 0, t) = Xt,

∂α

∂s2
(0, 0, t) = Yt,

and preseves the endpoints, i.e. α(s1, s2, 0) = p, α(s1, s2, 1) = q for any
(s1, s2) ∈ (−ε, ε) × (−ε, ε). Then we can define the Hessian of E at γ by
a matrix

Hessγ(E)(X, Y ) = ∂2(E ◦ α)
∂s1∂s2

(0, 0).

As before, we also have nice formula for Hessγ(E).

Theorem 3.6 (Second Variation Formula). For X, Y ∈ TγPM , we have

Hessγ(E)(X, Y ) = −
∑

t

⟨
Yt, ∆t

dXt

dt

⟩
−

∫ 1

0

⟨
Yt,

d2Xt

dt2 + R(γ̇(t), Xt)γ̇(t)
⟩

dt.

Here, R(−, −) is Riemann curvature tensor.

Proof. Let α be defined as above. Then the first variation formula gives us

∂(E ◦ α)
∂s2

= −
∑

t

⟨
∂α

∂s2
, ∆t

∂α

∂t

⟩
−

∫ 1

0

⟨
∂α

∂s2
,

∂

∂t

∂α

∂t

⟩
dt.

Taking ∂/∂s1, we get

∂2(E ◦ α)
∂s1∂s2

= −
∑

t

⟨
∂

∂s1

∂α

∂s2
, ∆t

∂α

∂t

⟩
−

∑
t

⟨
∂

∂s1

∂α

∂s2
,

∂

∂s1
∆t

∂α

∂t

⟩
−

∫ 1

0

⟨
∂

∂s1

∂α

∂s2
,

∂

∂t

∂α

∂t

⟩
dt −

∫ 1

0

⟨
∂α

∂s2
,

∂

∂s1

∂

∂t

∂α

∂t

⟩
dt.

Let’s evaluate the terms at (s1, s2) = (0, 0). We’re looking at the geodesic γ,
so that ∂α/∂t and ∂2α/∂t2 are zero. Hence the first term and the third term
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vanishes. For the second term, we can interchange the order of partial derivative
for function α so after evaluation we have

−
∑

t

⟨
∂

∂s1

∂α

∂s2
,

∂

∂s1
∆t

∂α

∂t

⟩∣∣∣∣∣
(0,0)

= −
∑

t

⟨
Yt, ∆t

dXt

dt

⟩
.

For the fourth term, we first have evaluation

−
∫ 1

0

⟨
∂α

∂s2
,

∂

∂s1

∂

∂t

∂α

∂t

⟩
dt

∣∣∣∣
(0,0)

= −
∫ 1

0

⟨
Yt,

∂

∂s1

∂

∂t
γ̇

⟩
dt

Note that
∂

∂s1
γ̇ = ∂

∂s1

∂α

∂t
= ∂

∂t

∂α

∂s1
= ∂Xt

∂t
.

For the second derivatives of vector fields, the order of differentiation matters;
we have curvature-involving formula

∂

∂s1

∂

∂t
γ̇ − ∂

∂t

∂

∂s1
γ̇ = R

(
∂α

∂t
,

∂α

∂s1

)
γ̇ = R(γ̇, X)γ̇.

(See Remark 3.4. of prior subsection. We recommend to check with precise
differential geometry. [S] would help a lot.) Sum up these equations, we get the
desired terms.

3.4 Kernel of Hessγ(E) : Jacobi Fields and Conjuate Points
As the first variation formula reveals the critical points of E, the second

variation formula reveals the properties of Hessian of E. Note that Hessγ(E)
is symmetric, which is straightforward by definition using variation. As be-
fore, we define the index Ind(γ) by the maximal negative definite dimension of
Hessγ(E), and say that γ is nondegenerate if Hessγ(E) is nondegenerate, or
equivalently, ker Hessγ(E) = 0.

Unlike in the Morse case, we cannot assume that E is nondegenerate; we
fixed specific E. The appropriate choice of metric can be used to avoid this
problem, but we should throw away the symmetries of our space. Instead, we
directly analyze ker Hessγ(E) first since itself contains a rich geometry.

We call a vector field J along γ Jacobi field if

d2J

dt2 + R(γ̇, J)γ̇ = 0.

We call this equation Jacobi equation. We do not assume J to be vanish
at γ(0) and γ(1) in general, just for the convenience later. (This is not very
important point.) If we assume that J(0) = 0 = J(1), then J ∈ TγPM .

Also, note that the Jacobi equation is second order ODE, and thus the
solution J is always smooth.

Proposition 3.7. J ∈ TγPM is in ker Hessγ(E) iff it’s a Jacobi field.
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Proof. The second variation formula explains that if J is a Jacobi field, then
Hessγ(E)(J, Y ) = 0 for any Y . The converse is similar. Let Hessγ(E)(J, Y ) = 0.
Take appropriate Y to show that J satisfies Jacobi equation locally, and then
take another Y to show that J cannot have discontinuity.

As our observation on the degenerate critical points in the finite dimensional
case, we might expect that if we move our critical path γ along Jacobi field J
a bit, then we again have geodesics FltJ(γ) for small t. For this, we define the
variation of geodesics by a variation α such that

α(0, t) = γ(t), α(s, −) is a geodesic.

Proposition 3.8. If α is variation of geodesics, J = ∂α/∂s is a Jacobi field.
Conversely, any Jacobi field can be obtained by such variations. If we assume
that J(0) = 0 = J(1), then J can be obtained by a variation α satisfying
α(s, 0) = p and α(s, 1) = q.

Proof. The proof of Lemma 3.10. of this note provides an idea. For the full
proof, see Lemma 14.3. and Lemma 14.4. of [Mil1].

Figure 9 illustrates the Jacobi field on S2 with standard metric. Let p, q be
the north pole and south pole of S2. Then it’s elementary to see that every
great half-circle is geodesic which connects p and q. For example, γ1 and γ2
in the picture are geodesics. Then there exists a Jacobi field J connecting two
geodesics, which could be obtained by taking derivative of appropriate variation.
This example could be extended to Sn for any n ∈ Z≥2.

Figure 9: Jacobi field J on S2, connecting γ1 and γ2

Now let’s put this property of Jacobi fields to describe the dimension of
ker Hessγ(E). As mentioned, the Jacobi equation is second order ODE and
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the solution is determined by J(0) and dJ/dt(0). Moreover, J ∈ ker Hessγ(E)
means that J(0) = 0. Hence the degree of freedom is at most n, and it follows
that the dimension of Jacobi field is less or equal then n. In particular, it is
finite dimensional.

We say p, q ∈ M are conjugate along γ if there exists a nonzero Jacobi field
J ∈ TγPM(p, q). Define the multiplicity νp,q of p, q by the dimension of such
Jacobi fields, then we can see that νp,q equals to the dimension of ker Hessγ(E)
for any geodesic γ connects p, q. For example, consider the north pole p and
south pole q of Sn again. One can easily check that p, q are conjugate with
νp,q = n − 1.

3.5 Index of Hessγ(E) : Broken Jacobi Fields
Now we have to describe Ind(γ), which is maximal negative definite dimen-

sion of Hessγ(E). Let’s begin with basic observation.

Lemma 3.9. Let γ ∈ Crit(E) be minimizing geodesic connecting p and q.
Then Hessγ(E) is positive semi-definite, so Ind(γ) = 0.

Such γ corresponds to the local minimum point in finite dimensional case.
Note that we still have the dimension of kernel left i.e. it’s positive semi-definite.

Proof. Let α : (−ε, ε) → PM be the variation of γ. Then as we’ve seen in
Lemma 3.1., we have E(α(s)) ≥ E(γ) = E(α(0)) for any s. It follows that

d2(E ◦ α)
ds2

∣∣∣∣
0

≥ 0,

which is elementary result from the calculus. Thus, considering the definition of
Hessγ(E)(X, Y ) with X = Y , we see that Hessγ(E)(X, X) ≥ 0 for any X.

At first glance, the index of general geodesic γ does not seem to be easy to
describe, even to show that it is finite. But it turns out that there is a elegant
result for this, thanks to Morse. We will devote the rest of this subsection on
the proof of following theorem.

Theorem 3.10 (Morse). For any γ ∈ Crit(E),

Ind(γ) = # {γ(t) : γ(t) is conjugate to γ(0)} .

The conjugate points γ(t) are counted with multiplicity. In particular, Ind(γ)
is always finite.

Note that, under the completeness assumption for M , for any p ∈ M there
exists a contractible neighborhood U of p, so that any two points in U can be
connected by a unique minimizing geodesic. It means that, any two close points
has a unique minimizing geodesic between them. Moreover, we have following.
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Lemma 3.11. Let U be a small neighborhood, p, q ∈ U and γ : [0, δ] → U be
the unique minimizing geodesic connecting p and q. Then a Jacobi field J along
γ is completely characterized by its boundary condition J(0) and J(δ).

Proof. Let J(0) ∈ Tγ(0)M and J(δ) ∈ Tγ(δ)M be given by curves c0 and cδ,
defined on some small interval (−ε, ε). Define a geodesic variation α : (−ε, ε) →
M by α(s) to be the unique minimizing geodesic from c0(s) to cδ(s). Then we
can see that α gives a Jacobi field with boundary conditions J(0) and J(δ).

Notice that there exists 2n degree of freedom to choose J(0) and J(δ), which
equals to the dimension of Tγ(0)M ×Tγ(δ)M . However, we’ve seen that the space
of solutions of Jacobi equation is at less or equal then 2n, where the number 2n
was from the choice of J(0) and dJ/dt(0). The previous argument shows that
in this case the solution of Jacobi equation is equal to 2n, and it’s isomorphic
to Tγ(0)M × Tγ(δ)M under the map J 7→ (J(0), J(δ)).

Let’s fix a geodesic γ ∈ PM(p, q), and 0 = t0 < t1 < · · · < tk = 1 be the
partition of [0, 1] so that γ[ti, ti+1] lies in such neighborhood. Define a subspace
of broken Jacobi fields in TγPM ,

T (t0, · · · , tk) = T :=
{

X ∈ TγPM : X|[ti,ti+1] is a Jacobi field along γ|[ti,ti+1].
}

.

(Recall that we’ve defined TγPM to be the broken vector fields along γ.) Since
the dimension of a space of Jacobi field is always finite dimensional, T (t0, · · · , tk)
is finite dimensional. In particular, Lemma 3.10. provides us an isomorphism

T (t0, · · · , tk) ≃ Tγ(t1)M ⊕ · · · ⊕ Tγ(tk−1)M.

Define another subspace S by following.

S(t0, · · · , tk) = S := {X ∈ TγPM : X(ti) = 0 for any i} .

We can easily see that T ∩ S = 0, since the Jacobi field on small interval is
determined by its value on endpoints and if J ∈ T ∩ S, we can and must take
J = 0 to get the boundary condition J(ti) = 0.

Lemma 3.12. We have orthogonal decomposition

TγPM = T (t0, · · · , tk) ⊕ S(t0, · · · , tk).

The orthogonality means, under bilinear form Hessγ(E). Moreover, S is positive
definite subspace for Hessγ(E).

Proof. Let’s see the decomposition first. Let X ∈ TγPM , and XT be the broken
Jacobi field in T such that XT (ti) = X(ti) for each i. There exists unique such
XT ∈ T , and it’s clear by definition that XS := X − XT ∈ S. As we’ve seen,
T ∩ S = 0. Hence this gives a direct sum decomposition.

Now let’s see the orthogonality. Let X ∈ T and Y ∈ S and put this into the
second variation formula,

Hessγ(E)(X, Y ) = −
∑

t

⟨
Yt, ∆t

dXt

dt

⟩
−

∫ 1

0

⟨
Yt,

d2Xt

dt2 + R(γ̇(t), Xt)γ̇(t)
⟩

dt.
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Since X satisfies Jacobi equation, Ẍ + R(γ̇, X)γ̇ = 0. Hence the second term
vanishes. The discontinuity of X which occurs in the first term are t0, · · · , tk,
but we’ve chosen Y ∈ S so Y (ti) = 0 for any i. Hence the first term also
vanishes, and we see that T, S are orthogonal under Hessγ(E).

For the positive-definiteness, let α be the variation associated to X ∈ S
Then we must have α(ti) = γ(ti) for each i, since Y (ti) = 0. Since γ provides
a minimizing geodesic in each segments [ti, ti+1], as in Lemma 3.8., we can see
that Hessγ(E)(X, X) ≥ 0. If X ∈ S and Hessγ(E)(X, X) = 0, one can easily
check (even algebraically) X lies in the kernel of Hessγ(E). That is, X is a
Jacobi field. But it’s impossible unless X = 0.

Since Hessγ(E) is positive definite on S, we might restrict Hessγ(E) to the
finite dimensional space T (t0, · · · , tk) to find its index, and even the dimension
of its kernel.

Now we go into the proof of main theorem. For 0 ≤ τ ≤ 1, denote γτ =
γ|[0,τ ], Hτ = Hessγτ

(Eτ ) where

Eτ (γτ ) = 1
2

∫ τ

0
⟨γ̇, γ̇⟩dt

and Ind(τ) to be the index of Hτ . Then Ind(1) = Ind(γ), and we’ll analyze the
properties of Ind(τ). The graph of Ind(τ), which could be deduced from the
following lemma, is illustrated in Figure 10.

Figure 10: The graph of Ind(τ) in simple case

Lemma 3.13. 1. Ind(τ) is monotone increasing function on τ .

2. Ind(τ) = 0 for small τ > 0.

3. For small ε > 0, Ind(τ − ε) = Ind(τ).

4. Let ν = dim ker Hτ > 0, i.e. γ(τ) is conjuate point of γ(0) of multiplicity
ν. Then for small ε > 0, Ind(τ + ε) = Ind(τ) + ν.
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Proof. 1. Let τ < τ ′ and Hτ (Xτ , Xτ ) < 0. Then we can extend Xτ to [0, τ ′]
by defining Xτ ′ to be equal to Xτ on [0, τ ] and equal to 0 on [τ, τ ′]. (Since
Xτ vanishes at the endpoint, this definition works well.) Then it’s clear
that Xτ ′ gives negative definitive dimension for Hτ ′ , i.e. Ind(τ) ≤ Ind(τ ′).

2. If τ is small enough so that γ(0) and γ(τ) can be connected by minimizing
geodesic, then by Lemma 3.8. Ind(τ) = 0.

3. For fixed τ , we can choose the partition (t0, · · · , tk) so that ti < τ < ti+1.
By Lemma 3.11., we can compute Ind(τ) by resticting the domain of Hτ

to the subspace
Ti ≃ Tγ(t1)M ⊕ · · · ⊕ Tγ(ti)M.

So Ti does not depend on τ (locally), while Hτ depends on τ continuously.
Note that the negative definiteness is open condition, i.e. if Hτ (X, X) < 0
for some X, then Hτ ′(X, X) < 0 for τ ′ close to τ , assumed that H depends
continuously on τ . Thus we have Ind(τ − ε) ≥ Ind(τ) for small ε > 0.
However, by monotonicity, we have Ind(τ − ε) = Ind(τ).

4. Let’s use that same notations as above. With assumptions in the state-
ment, dim ker Hτ = ν and the dimension of negative definite subspace is
Ind(τ). It means that Hτ is positive definite on the (orthogonal) comple-
ment of those spaces, which has dimension ni−ν − Ind(τ). As mentioned,
positive definiteness is also an open condition. So we get one side of equal-
ity, Ind(τ + ε) ≤ Ind(τ) + ν.
For the converse, we need to show that ker Hτ can be included to the
negative definite subspace of Hτ ′ . Denote Ind(τ) = µ for a while, for
convenience. Take the basis of negative definite subspace of Hτ , say
X1, · · · , Xµ ∈ Tγτ

PM . Likewise, take the basis of kernel of Hτ , which are
the Jacobi fields J1, · · · , Jν ∈ Tγτ

PM . In particular, dJi/dt(τ) ∈ Tγ(τ)M
are linearly independent, since they should define the independent solu-
tions for ODE. Take vector fields Y1, · · · , Yν ∈ Tγτ+εPM such that⟨

dJi

dt
(τ), Yj

⟩
= δij .

Extend Xi, Ji to the interval [0, τ + ε] by extension by zero. We have,
from the second variation formula,

Hτ+ε(Ji, Xj) = 0,

Hτ+ε(Ji, Yj) = δij .

Consider the vector fields along γτ+ε,

X1, · · · , Xµ, c−1J1 − cY1, · · · , c−1Jν − cYν .

One can check that, on the subspace generated by these vector fields,

Hτ+ε =
(

Hτ |X cA
cAt −2Id + c2B

)
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where Hτ |X is Hτ restricted to the subspace generated by X1, · · · , Xµ,
which is negative defnite, and A, B are some fixed matrices. For small c,
we can easily deduce that this matrix is negative definite, i.e. the other
side of equality, Ind(τ + ε) ≥ Ind(τ) + ν.

Combining these, the proof of Theorem 3.9. follows. We have an unexpected
consequence from the theorem.

Corollary 3.14. On a geodesic γ : [0, 1] → M , there exists only finitely many
t such that γ(t) is conjugate to γ(0) along γ.

3.6 Cell Structure of Loop Space ΩSn

We’ve seen the ways to compute the index of geodesic γ with respect to
energy functional E. We expect that this result would reveal the topology of
PM . There is a theorem we wanted, which is analogous to the Morse lemma.

Theorem 3.15. Let M be complete Riemannian manifold and p, q ∈ M be
points which are not conjugate along any γ. Then PM(p, q) has a homo-
topy type of a countable CW complex, which contains one Ind(γ)-cell for each
geodesic γ.

The proof is analogous to the one of Morse lemma, except the point that we
need finite dimensional approximation. See Section 16 and 17 of [Mil1] for the
discussion.

Again, we see that the geodesics (critical points) and the topology of path
spaces (manifolds) have a close relation. Even more, we might expect that the
homology of path space can give lower bound of the number of geodesics.

There is a simple example to apply this theorem. Consider the based loop
space of n-sphere, ΩSn. For fixed point p say the north pole of Sn, we have a
countable geodesics, say {γk : k = 0, 1, 2, · · · } which goes around the great circle
of Sn k-times. The antipodal point q, which is the south pole, is conjugate to
p with multiplicity (n − 1), as we’ve seen in Section 3.4. In the geodesic γk, q
appears k-times, so that we have

Ind(γk) = k(n − 1).

It follows that ΩSn has a cell structure with one cell in dimension k(n − 1) for
each k ∈ Z≥0.

Note that πk(ΩSn) ≃ πk+1(Sn), which could be shown by using suspension.
If n = 1, the above result shows that ΩS1 is a countable discrete set. We can
see this from the fact that π0(ΩS1) ≃ π1(S1) ≃ Z, and πk(S1) = 0 in any other
dimensions. If n > 2, we directly have the homology of ΩSn, which is given by

H∗(ΩSn;Z) ≃
{

Z if ∗ = k(n − 1)
0 otherwise

28



In particular, we have that H∗(ΩS3) ≃ H∗(CP∞). So one might ask that
whether CP∞ is homotopy equivalent to ΩS3 or not. The answer is false, since
CP∞ is Eilenberg-MacLane space K(Z, 2) so that π2(CP∞) ≃ Z and for any
other k, πk(CP∞) = 0. But πk(ΩS3) ≃ πk+1(S3) does not vanish at high
dimensions.

There is also a beautiful application of this theory on the symmetric spaces,
on which there are symmetries which preserve geodesics. For example, Lie
groups are symmetric spaces. On such spaces, computing the index of geodesics
becomes much easier than on the general spaces. One can prove the celebrated
Bott’s periodicity theorem with this tool. The Part IV of [Mil1] is devoted to
this topic.

Even though we get a nice result for now, there is a missing point; we can
count the cells, but there is no information about the attaching maps. For
example, we cannot say anything about the homology of ΩS2 (except the point
that it would have rank ≤ 1 in each dimension) with previous results. The
differential of Morse homology contains such information, so to get more precise
information on the topology of a space, we need to construct Morse homology
in infinite dimension.

Of course, we can use another nice function instead of E, which contains
another information than E that we’re interested in. For example, Floer the-
ory uses a functional called Hamiltonian action functional AH instead of E,
which has Hamiltonian orbits as its critical points. Then the Floer homology is
analogy of Morse homology constructed with AH on the loop space of a sym-
plectic manifold M . There is a differential given by trajectories between the
orbits, which corresponds to the Morse trajectories. Our next topic will be the
introduction to the Floer homology.
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