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Overview

Well-known Classical Fact from 70s

There are 8 types of generic bifurcation of Hamiltonian periodic orbits.
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Dynamical Systems and
Bifurcations



Toy Example : Critical Points of a Function

e NN

Figure 1: Graphs of fi(z) = 2(2® + t)(z — 1) for varying ¢.

@ t < 0, two minima (e) and one maximum. (e)
@ t =0, e and e meets at the inflection point. (e)

@ t > 0, e vanishes and one minimum survives. (o)

Idea. Similar thing happens for periodic orbits.
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Van der Pol Oscillator

Example :

=

=/ .
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2

Figure 2: Phase portraits of Van der Pol oscillator for varying .
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Van der Pol oscillator is given by &

0 is a fixed point, and its property changes as u varies.

Also, at i = 0, a family of periodic orbits emerge.



Dynamical System

According to [Sma67], a dynamical system consists of following data.

@ A space W (we use smooth manifolds)
@ A group action G — End(WW) (we use diffeomorphisms)
If G =Z = (F), we say the system is discrete.
Interesting objects
e Fixed point: © € W such that F(z) = x.
e Periodic point: = € W such that F¥(z) = z for some N.

@ Invariant subspace: S C W such that F'(S) C S.

@ Non-wandering points, recurrent points, etc.
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Continuous Dynamical System

If G =R = {F,}, we say the system is continuous.

A vector field %Ft|t:0 = X consists equivalent information with £,
which is called the infinitesimal generator of F;.

Example. The system determined by an ODE & = X (z).
Interesting objects

e Critical points: x € W such that F}(z) = x for any ¢. (or X, =0.)

e Periodic orbits: the orbit {F;(z) : t € R} forxz € W
such that F(z) = z for some 7 > 0.

e Invariant subsets S C W such that F;(S) C S for any t (or t > 0).
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Hamiltonian Dynamical System

Let (W,w) be a symplectic manifold, H : W — R.

H defines a Hamiltonian vector field Xy via relation
iXHOJ = UJ(XH7 —) = —dH.
We call (W, w, H) a Hamiltonian dynamical system.

@ Xy preserves w, i.e. Lx,w = 0.

@ Xy preserves H, i.e. Xg flows on H~!(c) for each c.

The first example is the geodesic flow on a Riemannian manifold (M, g),

Ip|2

Hy(q,p) = =5

which is defined on T* M.
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Example : Classical Mechanics

Consider the mechanical system in (T*R"™, " dp; A dg;) with energy

H(q,p) = @ +V(q).

Corresponding Hamiltonian vector field is

7] 0

Xy =
which can be translated into

g=p, p=4=-VV.

This is Newton's 2nd law, which governs the classical mechanics.
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Bifurcation

Two vector fields X,Y on IV are topologically conjugate if there exists
a homeomorphism F': W — W which carries the oriented orbits of X to
the ones of Y.

It means that the dynamics of X and Y are essentially the same.
Consider a family of vector fields X; on W, parametrized by a set I.

A point s € [ is called

@ a robust point if there exists a neighborhood U of s in I such that
if t € U, X5 and X; are topologically conjugate.

@ a bifurcation point if not.

We will only consider 1-dimensional bifurcation, i.e. I is 1-manifold.
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Bifurcation

Figure 3: Very schematic picture of a bifurcation.




Bifurcation of Our Interest

Setting. Hamiltonian vector field Xz on 4-dimensional (W,w).
Consider a periodic orbit v or a critical point x at H = c.
What happens if we change the energy level?

1. A qualitative change of x, or v and its multiple covers.

2. An appearance or disappearance of another orbits near «y or x.

3. Properties of the new orbit. (elliptic / hyperbolic)
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Elliptic and Hyperbolic Orbits




Elliptic and Hyperbolic Critical Points

Let « be a critical point of Xz on W.

The characteristic exponents of x are the eigenvalues of dX g (x).
Since dXp(x) € sp(2n), these come with pairs, +z, £z € CE(x).
Let CE(x) = {e;} be characteristic exponents of z.

o If 0 # o € 4R for all j, call z elliptic.
o If a; ¢ iR for all j, call z hyperbolic.

In 4-dimensional case, we have following non-degenerate (« # 0) cases:

e Elliptic: CE(x) = {£ia, £if} for 0 # o, B € R,
e Saddle-center: CE(z) = {xia,xr} for 0 # a,r € R,

@ Hyperbolic: CE(x) = {£z,£z} for 0 # z € C,
or CE(x) = {£r, £t} for 0 # r,t € R.
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Elliptic and Hyperbolic Critical Points

Let a be a characteristic exponent of z, A = e® and v be eigenvector.
Consider the linearized flow in direction v at a critical points.

@ If |A\] =1, the flow rotates around z. (center)
@ If |A] > 1, the flow is expanding and tends away from x. (unstable)
e If [A] < 1, the flow is contracting and tends closer to x. (stable)

\ f
NN\

e

) 2 0 2 0 4 =2 Q 2 4

Figure 4: Elliptic and hyperbolic fixed points
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Rigidity of Critical Points of Symplectomorphism

(a) Elliptic Exponents (b) Hyperbolic Exponents

Consider the elliptic critical point 2 with CE(z) = {+i«a, +i5}.

Under perturbation, « and /3 change continuously, but locked in iR
unless a = 3 at some point. So it cannot suddenly become hyperbolic.
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Poincaré Section

Theorem (Poincaré Section and Return Map)
Let v be a periodic orbit of X in W and = € ~.

1. There exists a codimension 1 submanifold S C W such that x € S
and is transversal to X.

2. Define a map ¥ : S — W by

U(y) = FIX,)(y)

where 7(y) = min{t > 0 : FI;*(y) € S}, then this is well-defined
and unique up to conjugation.

We call S Poincaré section, and ¥ return map or Poincaré map.
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Poincaré Section

' "

Figure 6: A Poincaré section and the return map

e e e e mpmereees T ey W, A0S 15/54



Hamiltonian Version of Poincaré Section

Proposition
Let X = Xy be a Hamiltonian vector field and v be a periodic orbit
with regular energy cy. There exists a Poincaré section Y such that

1. Y C W is a contact submanifold.
2. S, =Y NnH (c) for c close to ¢y is a symplectic submanifold.

3. The return map is a symplectomorphism.

2n-dimensional W (2n — 2)-dimensional S

Flow of vector field Xp a symplectomorphism ¥
1-periodic orbit of Xz on W

k-periodic orbit of Xy

=
=
& a fixed point of ¥ on S
=

k-pair of k-periodic points of W.
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Aside : A Standard Picture the Poincaré Section

(a) ¢ =0.0833 (b) ¢ =10.125 (€) c=0.167
Figure 7: [HH64] Poincaré sections of the Hénon-Heiles system

1. Take an initial condition zg and compute its orbit .
2. Mark the intersections z;'s of v and S.

3. Draw a curve (if possible) between x;'s.
4

. Repeat for different initial conditions.
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Characteristic Multipliers of Periodic Orbits

Let v be a periodic orbit, S be a Poincaré section and yN S = {«}.
The characteristic multipliers of - are the eigenvalues of dW¥,,.
Since dV¥,, € Sp(2n), the multipliers come with pairs, A*!, A\*1.
If dim S = 2, which is of our interest, it simplifies by A € ST UR\ {0}.
e If Ay, € R\ {£1}, call v hyperbolic.
We say v is positive or negative depending on the sign of A,.
o If A, € ST\ {£1}, call v elliptic.

We will abuse the notation by A, = A\, sometimes.
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Characteristic Multipliers

Ahahardh
NN

(@) Ay <0 (b) Ay =1 (€) Ay >0

As in the critical points, the transition between elliptic and hyperbolic
periodic orbits can be done only through +1.




Aside: Birkhoff-Lewis Theorem

Proposition ([BL34] Birkhoff-Lewis)

Let W : U C R? — R? be a symplectomorphism with an elliptic fixed
point W(0) = 0. Then generically, in every neighborhood of 0,

1. there exists an invariant circle in U without periodic points.

2. such invariant circles have positive measure.

3. for any integer k, there exists a k-periodic point in U.

It means the elliptic periodic orbits can be detected from nearby orbits,

while the hyperbolic ones cannot be.
In this sense, the hyperbolic periodic orbits are qualitatively invisible.

Note. The generic condition here is elementary twist condition,
explained in Appendix 1.

e e e e mpmerreees T ey W, SR

20/54



Aside : Vague Attractor of Kolmogorov

Figure 9: [El 03] VAK

@ We have invariant tori (of positive measure) around ~.

@ Between tori, there are periodic orbits. (red dots)

We say such configuration a vague attractor of Kolmogorov, or VAK.



8 Types of Bifurcations




Orbit Cylinder

Let v be a periodic orbit, S be a Poincaré section at .
We consider a family of symplectomorphisms ¢ : S x [ — S.
If 2 is a fixed point of g, we say (z,s) is a fixed point of .

Lemma (Orbit Cylinder)

If Az # 1, there exists neighborhoods x €¢ U C S and s € V C I and a
smooth map P :V — U such that P(s) =« and {(P(t),t) : t € V'}
consists of fixed points.

).

s

S 5-—-4
" I 5

. g
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Two Types of Orbits Cylinders

Ny H=c ° H=c

Figure 10: Two possible orbit cylinders

The height parameter of the orbit cylinder can be chosen as the energy.

There are two possibilities; the orbit cylinder might be transversal or
tangent to the energy hyperplane.
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How to Classify?

Let dim W = 4, so the Poincaré section S is 2-dimensional.

Critical Points
e For critical points, CE(z) = {£z, £z} in general.
@ When there is iaw € CE(z), Lyapunov theorem can be applied. (I)

o If CE(xs) = {tiay, £if:} and lag = kfs, for some s and k,l € Z,

the Lyapunov assumption is violated. (VII, VIII)

Periodic Orbits
e For periodic orbits, if A, # 1, there is an orbit cylinder.
o If A¥ =1, k-th cover of the orbit bifurcates. (Il - V)

e We'll analyze by looking at the fixed points of the Poincaré section.
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Bifurcation Diagram

- Vertical axis is the energy.

We'll see this kind of - e is the bifurcation point.

diagrams. - © is the critical point of H.

- Each line is a family of periodic points of
the return map in Poincaré section.

- Thick line is a family of fixed points, or
1-periodic orbits.

- Thin line is a family of k-periodic orbit,

where the period is written aside the line.
O (2 here.)

- —, ® are elliptic, —, ® are hyperbolic,
and ©® is saddle.

e e B e — ey W, SR 2554



I. Burst / Reincarnation

Critical points with iav € CE(x)



Lyapunov’s Theorem

Let x be a critical point of Xy. x is called H-elementary if

1. 0 is not a characteristic exponent.
2. If iav is a characteristic exponent, i has multiplicity 1.
3. If icr, i3 are characteristic exponents with o # +[3, they are

Z-linearly independent.

Theorem ([Buc70])
For generic Hamiltonian H, every critical point of Xy is H-elementary.
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Lyapunov’s Theorem

Theorem (Lyapunov)

Let © be an H-elementary critical point of Xy . If £if3 is a
characteristic exponent for 3 € R, there exists a 2-dimensional
submanifold Cg such that

.xECg.

. Cg is Xg-invariant submanifold.

. Cg is a union of periodic orbits v, which converges to x as r — 0.

1
2
3. T,Cp is an eigenspace corresponds to £i[3.
4
5

. The period of 7, converges to 2r/3 asr — 0.

Simply, there exist families of periodic orbits emerging from x for each
elliptic exponent.
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Lyapunov Orbits

Example. Lyapunov orbits of the restricted three-body problem, emerges
from the Lagrange points.

Lyopunov| 95

oA orbits

06
04
02

s u
L2

yind)
e

y{nd)
°

02
04
06
0.8

05
15 06 08 1
x(nd) x(nd)

12 14 16

Figure 11: [ZWZZ20] Lyapunov orbits of RTBP, associated to L1 and L.

These Lagrange points have only one pair of elliptic exponents, so there
is only one family of orbits.




Type |. Phantom Burst

Target. Critical point x with pure imaginary characteristic exponents.

Case 1. {tia,+r} with a,r € R. (saddle-center)

- By Lyapunov’s theorem, we
have a family of orbits near x
- The characteristic multipliers of

the Lyapunov orbits near x is
eventually real, so the orbits are

hyperbolic.

@ - This hyperbolic family cannot
be observed in the phase
portrait, so we call this a

phantom burst.
Figure 12: Phantom burst
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Type |. Stable Burst and Reincarnation

Case 2. {+tia, i} with Q-independent «, 8 € R. (pure center)

Figure 13: Stable burst

Figure 14: Reincarnation

e e B e —

By Lyapunov's theorem, we
have two families near ©.

The characteristic multipliers
are unimodular, so both orbits
are elliptic.

If two orbit cylinders are on the
same side respect to the energy
hyperplane, we observe two
families of orbits burst from the
critical point. (Stable burst)
Otherwise, we observe a family
of orbit absorbed into the
critical point and burst out
again. (Reincarnation)

December 12th, 2025



Il. Creation / Annihilation

Periodic orbit such that A, =1



Extremal Fixed Point

Now we only focus on the cases \¥ = 1 for some k.
We will see A, = 1 case in detail, and other cases briefly.

We call (z, s) is extremal fixed point if locally we can write

(@) ) ) )-

with a = £1, 5,0 # 0.

Note. [Mey70] defines this in terms of generating functions.
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Meyer’s Theorem - Extremal Fixed Point

Theorem ([Mey70])

Let (z,s) be an extremal fixed point. Then,

1. There exists a family of fixed points ;.

2. x divides x; into two arcs: one entirely consists of hyperbolic fixed

points and the other consists of elliptic fixed points.

3. In any coordinate system, s is a nondegenerate maximum or

minimum of the family.

Hyperbolic

Elliptic

Figure 15: Meyer's theorem for extremal fixed point
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Outline of the Proof

We need to solve, for a = £1, 5, # 0,
O:Q—q:ap+fyt+,
0=P—p=5t+pg"+ .

There exists a solution (g, p,t) = (7,p(7), (7)), since a, d # 0, which are
p(7) =0(r%), (1) = —(B/9)7* + O(?).

Note that ¢ obtains non-degenerate maximum or minimum at 7 = 0.

The Jacobian along this solution is given by

1 «
o087 1)

so the multipliers are 1 + (2a37)*/? + - - -, which means that the orbit is
hyperbolic on one side and elliptic on the other side of 7 = 0.
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Type Il. Creation and Annihilation

Target. Periodic orbit such that A, = 1.

- The vector field develops an
unstable periodic orbit e. It's a
closing of a recurrent orbit,
called Pugh catastrophe.

- e splits into a hyperbolic orbit
and an elliptic orbit.

- In the phase portrait, we
observe an elliptic orbit

Figure 16: Creation and annihilation suddenly appeared. (Creation)

(Also called birth-death) - If we read this in reversed time,
we can observe a vanishing pair
of orbits. (Annihilation)
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I1l. Subtle doubling / halving
IV. Materialization / Murder

Periodic orbit such that A\, = —1
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Meyer’s Theorem - Transitional Fixed Point

We call (z,s) is a transitional fixed point if A, = —1 and satisfies some
non-degeneracy condition. (See Appendix 2)

Theorem ([Mey70])

Let (x,s) be a transitional fixed point and x; be an orbit cylinder near
xs, parametrized by V C I.

Then we can choose V' small enough so that V' \ {s} = Viy U Vg, where
x5 is hyperbolic (elliptic) if s € Viy (V). Moreover, either one of the
following holds.

1. There exists functions ¥ x¥ : Vit — U such that (zH(t),t) is
elliptic periodic points of period 2 and x (t) — x ast — s,

2. There exists functions x¥ 28 : Viz — U such that (zZ(t),t) is
hyperbolic periodic points of period 2 and x;(t) — x ast — s.

We call these an arc of nearby hyperbolic/elliptic periodic points.
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Type Ill. Subtle Doubling and Halving

Target. Periodic orbit such that A, = —1.

- The elliptic orbit cylinder
becomes hyperbolic at e.

- An elliptic orbit with period 2
emerges.

- In phase portrait, we observe
that the period of — is
doubled. (Subtle doubling)

- In the opposite direction, the
period is halved. (Subtle
halving)

Figure 17: Subtle doubling and halving
(Also called period doubling)
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Type lll. Subtle Doubling and Halving

dEfdt

dE/dt

v =0.056

v =0.05579

T, = 1.18797

| T2=20085x

dE/dt

T'=1.17585 T, = 2.0000253 %P1 D
'
. {
§ ‘\ -
N
\ yd
-
\\\ ------ /////
N - 0 i = & 0
v = 0.0553
T, =1.19335 T, = 1.21880

T, = 2.0917 X Ty

w 03

0

E

7

0

Figure 18: [Max] Period doubling in Kuramoto—Sivashinsky equation




Type IV. Materialization and Murder

Target. Periodic orbit such that A\, = —1.

- Similar to subtle doubling, but
with an interchange of elliptic
and hyperbolic.

- We observe that — suddenly
appeared. (Materialization)

- In the opposite direction, —

suddenly disappears. (Murder)

Figure 19: Materialization and murder
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V. Phantom Kiss
VI. Emission / Absorption

Periodic orbit such that )\fy =1, 523
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Meyer’s Theorem - Bifurcation Points

Let A\, = exp(£2mil/k), (I,k) =1, k>3 and 0 <1 < k.

We call (z,s) is a k-bifurcation point if it satisfies some non-degeneracy
condition. (See Appendix 3.)

Theorem ([Mey70])
Let (z,s) be k-bifurcation point. Then for a small orbit cylinder
parametrized by V C I,

1. (k = 3) There exists three arcs of nearby hyperbolic periodic points
of period 3, parametrized by V' \ {s}, converging to x.

2. (k> 5) There exists k arcs of nearby hyperbolic periodic points and
k arcs of nearby elliptic periodic points of period k, parametrized by
Vi C V' \ {s}, converging to x.

3. (k=4) One of (k = 3) or (k > 5)-phenomena occurs.
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Genericity

Let G be the set of 1-parameter family of symplectomorphisms on S such
that

1. Each periodic point is elliptic, hyperbolic, extremal or transitional.
2. If Ay = exp(£2mil/k) for k > 3, then (x, s) is k-bifurcation point.

Theorem ([Mey70])
G is a residual set in the space of 1-parameter family of
symplectomorphisms.
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Type V. Phantom Kiss

Target. A\, = exp(2mil/k), (I,k) =1 and k=3 or 4.

- A hyperbolic orbit of period 3
emerges in both directions of e.

- We only observe a moment of
instability of —.

- The family of hyperbolic orbit
only experiences a sudden

absorption to the elliptic orbit.
(Phantom kiss)

Figure 20: Phantom kiss
(Also called touch-and-go)
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Type VI. Emission / Absorption

Target. \, = exp(2mil/k), (I,k) =1 and k > 4.

- A hyperbolic and an elliptic
orbit of period k£ both emerges
at e. (Emission)

- An elliptic orbit of period & is
observed.

- In the opposite direction,
k-periodic orbits are absorbed

into the original periodic orbit.
(Absorption)

Figure 21: Emission and absorption
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VII. Bubble / Liberation
VIIl. Resonance

Critical point which is not #-elementary
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Change of Exponents of a Fixed Point

Target. Fixed point 0 of parametrized Hamiltonian H,,.
Assume that 0 is elliptic if 4 < 0 and hyperbolic if 1z > 0, i.e.
- p<0: CE(x) ={+tia, £if} for a, € Rsg, a # S.
-u=0:a=p
- u>0: CE(z) = {£z,+z} where z ¢ St
If < 0, the stable burst occurs, while nothing happens if © > 0.
Question. What happens to two elliptic orbit cylinders?

[MS71] showed that there are only two possibilities in general.
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Type VII. Bubble

<) o o

(@ p<o (b) <O () p=0 (dp>0

Figure 22: Bubble

The first possibility is a bubble: the shrink of two orbit cylinders into a
fixed point.




Type VII. Liberation

< < ©<
(@) n <0 (b) p=0 () n>0

Figure 23: Liberation

The second possibility is a liberation: two orbit cylinders patch together.

This phenomenom actually happens in CRTBP at L.




Type VIII. Resonance

Target. Fixed point 0 of parametrized Hamiltonian H,,.

For characteristic exponents a;; and o, if there exist coprime integers
k., such that
kiOél = lOég,

then H-elementary assumption of Lyapunov theorem is violated.

This is called resonance, and there are many possible different
phenomenom occurs depending on (k,1).

[SS73] gives the classification of generic resonance.

The situation is quite similar to the case of the bubble: ‘bridges’ between
two orbit cylinders are collapsed into a point.
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A Life of Orbit

Figure 24: A life of an orbit
A periodic orbit can be born and die at critical point or other orbit.
For varying energy, it experiences various bifurcations, make birth of

another orbits, and become from hyperbolic to elliptic or vice versa.
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List of Generic Bifurcations

No. Name Case Tool
. . ‘H-elementary
| Burst / Reincarnation o ) Lyapunov theorem
critical points
I Creation / Annihilation vy with Ay =1 Extremal f.p.
Il | Subtle Doubling / Halving Ay =—1 Transitional f.p.
v Materialization / Murder Ay =-1 Transitional f.p.
3 _ L . . .
Vv Phantom Kiss )\z = 3 b!furcat!on po!nt
Ay =1 4-bifurcation point
\ Emission / Absorption A =1 (k> 4) | k-bifurcation point
-el
Vil Bubble / Liberation #t-elementary ;
violated
VIl Resonance Ft-elementary -

violated

Dongho Lee

December 12th, 2025
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Closing




Relation with Floer Homology

Let v, be a periodic Hamiltonian orbit at the energy c.

The Conley-Zehnder index pcz(7.) changes only if A. passes 1.
Indeed, poz(7Y) changes if AV passes 1.

= The bifurcation comes with the index change.

Also, the invariance of local Floer homology controls the index change.
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Example : Hill’s Lunar Problem

0.755

31014 X
3.136 N b

7N 14
3274 AR
3.280
3362 g

--ziz==s

3.876

4.347
o0

Figure 25: [Ayd23a] Bifurcation diagram of Hill's lunar problem




Higer Dimension?

Higher dimensional W

@ [Mey70] said, there would be no essentially new generic behavior.

@ The bifurcation would happen when one multiplier becomes a root
of unity, and generically we don't expect the other multiplier
simultaneously becomes another root of unity.

Higher dimensional I (the parameter of bifurcation)

@ [Mey70] said, there are too many essentially different forms of
bifurcation if we increase the dimension of parameters.

@ The theory would become very wild, and there's no systemetic result
as | know.
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Genericity and Symmetry

Generically, a given Hamiltonian system is generic. (It's trivial.)

To check the genericity, which is well-defined in this case, we must check
the linearized return map for a periodic orbit.

To say ‘this system is generic'is impossible in practice, because there are
infinitely many periodic orbits in general.

Moreover, most of interesting systems are not generic, because of their
symmetries in nature.

@ The circular restricted three-body problem has Zy x Zs-symmtery.

@ [Ayd23b] The linear symmetries of Hill's lunar problem, a limit case
of of CRTBP, is given by Zo X Zy X Zo.

Many works were done for symmetric Hamiltonians, including [GSM87].
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Pitchfork Bifurcation

- The orbit changes hyperbolicity
and ellipticity, and two orbits
with period 1 are born.

- The reason is Zy-symmtery of
the orbit or the return map.

- This type of bifurcation, which
is not generic, is observed in
Hill’s lunar problem, CRTBP,
and many other systems with

symmetry.

Figure 26: Pitchfork bifurcations
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Further Questions

Investigating bifurcation by Conley-Zehnder index:

o Floer theory provides systemetic way to study bifurcation.

@ [AFvK™24] studied Hill's lunar problem with CZ index.

@ We might apply the method to three-body problem and other
interesting systems to investigate periodic orbits and bifurcations.

General relation between the change of index and the bifurcation type:

o [FKM23] showed the invariance of xspr explicitly in each case.

@ If we know the bifurcation type, what can we say about the index of
specific orbits?
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The End

Figure 27: Thank you for your attention!



Appendix 1. Twist Condition

U:0€eUCR? = R?is a-twist map if 0 is a fixed point of U with
characteristic exponents +ia for a € R.

If we can write
W(z) = etBlzl; 1 Ry(2),
where Ry(2) < K|z|* for some K > 0, we call such VU is written in

(a, B)-normal form.

Theorem (Birkhoff-Sternberg-Moser Normal Form)

Let ¥ be a-twist mapping with o # 0, kw/2 or 2kmw /3. Then there
exists a chart such that U can be written in («, 8)-normal form and the
sign of 3 is independent of the change of the chart.

An a-twist map is an elementary twist map if « # 0, k7 /2, or 2k7/3
and 3 # 0, which was mentioned in the Birkhoff-Lewis theorem.
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Appendix 2. Transitional Fixed Point

A fixed point (x, s) is transitional if locally
Q -1 1) (q
= h.o.t
(P o ) (8] + oo,

Pyy=2a, Pp=p8, Pp=1v, Puq=060, Qu=2¢

and for

with n =0 + al + af/2,

v#0, o®+2n#0.



Appendix 3. Bifurcation points

Let A, = exp(+2mil/k), k>3, (I,k) =1and 0 < < E.

[Bir27] introduced a normalization procedure, which gives local expression

(q,p) = (r*/? cos 0, 7/?sin ),
(Q,P) = (Rl/2 cos ©, R'/?sin 0),

k
B 2rl ta(t) B;(t) ;
=240 + 7 + T + E —T

1)
k
2
R=r+ %rk/zsmkG—&—]ﬂ(eﬂﬁﬂ-

N r=2/2 cos ko + ©4(0, 7, t),
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Appendix 3. Bifurcation points

Moreover, we require for /2 = p,

&Ry
op?
0'0,
6 B
We denote a(0) = «, 81(0) = 3, v(0) = ~. If

o (k=3) a,v#0,
o (k=4) a,7,8+7#0,
o (k>5)a,pB,v#0,

we call (z,s) a k-bifurcation point.

——(6,0,0) =0 forj=0,1,---

——(6,0,0)=0 fori=0,1,---
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