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Introduction



Bifurcation : Toy Example
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Figure 1: Graphs of fi(z) = z(z — 2)(2* + )

As t increases, there are changes of the critical points.
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Introduction

Real Example
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Figure 2: Trajectory of van der Pol oscillator, & — (1 — z?)

As 1 increases, there are changes of the periodic orbits.



Hamiltonian dynamics and
symplectic manifolds



Classical Mechanics

Classical mechanics is governed by 2nd order ODE on R™ which is given
by Newton's second law,

F=ma < —-VV(q) =4,
where ¢ € R"™ is the position and V is the potential energy.
The mechanical energy is defined by
_ _ laf
H=K+V:= 74—V(q)7
where K is the kinetic energy.

Law (Classical Energy Conservation)

H is conserved along the trajectory of q determined by force F' of the
form —VV where V =V (q).
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Hamiltonian Dynamics

Idea. Using the energy conservation as a principal law.

Let w = dp A dq, defined on T*R".

For H : T*R™ — R, we define a Hamiltonian vector field Xy by
iXHw = —dH.

Then,

@ The flow of Xy preserves H, i.e. Xy(H) =0.

o & = Xy (x) defines the mechanical system with total energy H.
For example, if H(q,p) = ||p||>/2 + V(q), we have
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Symplectic Manifolds

We can generalize the concept to certain manifolds.
Let w be a non-degenerate closed 2-form on a manifold V.
Then,
@ kerw =0 = we can define Xy by ix,w=—dH.
@ w(X,X) =0 = energy conservation, w(Xg,Xy) =dH(Xg) =0.

@ dw =0 = invariance of the physical law, Lx,w = 0.

We call (W,w) a symplectic manifold, and (W, w, H) a Hamiltonian
system.
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Periodic orbits

Periodic orbit is an orbit v of FI;X* such that (0) = ~(7) for some 7.
Why is this important?

@ Invariant sets are building blocks of a dynamical system.

@ Arnold conjecture : The minimal number of Hamiltonian periodic
orbits are bounded by the sum of Betti numbers of the manifold.

o Floer theory : Periodic orbits are generators of HF, (M), an
important symplectic invariant.

@ Practical purposes.
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Conley-Zehnder index



Poincaré Section and Return map

Theorem (Poincaré Section)
Let v be a periodic orbit of X in W and = € 7.
1. There exists a codimension 1 submanifoldY C W such that x € Y
and is transversal to X .

2. In the case of Hamiltonian flow, we can take Y such that each
S. =Y N H~(c) is a symplectic submanifold.

We call Y or S a Poincaré section.

We can define the return map by ¥(y) = Flf(u) (y) for y close to x

where 7(y) =min{t >0 : y € Y}.

In the Hamiltonian setting, ¥ is a symplectomorphism.
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Poincaré Section

Figure 3: A Poincaré section and the return map
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Elliptic and hyperbolic orbits

Let v(0) = v(7) = « and ¥ be a return map.
Then W is (locally) a symplectomorphism, which means w = ¥*w.

In local coordinates, we can write this condition as

ATQA=0Q where A=dV,, Q= 0 Id.
~I1d 0

Note
If X € o(A) = {eigenvalues of A}, then A=, \,A\™1 € o(A).

If [\ # 1 for any X € o(y) = o(d¥,), we call v hyperbolic.
If [\| =1 for any A € o(v), we call  elliptic.
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Elliptic and hyperbolic fixed points

Periodic orbits correspond to the fixed points of the return map.
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Figure 4: Trajectory near the elliptic and hyperbolic fixed points.

Elliptic orbits are stable, while hyperbolic ones are not.
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Elliptic and hyperbolic orbits in dimension 4

If dim M = 4, the situation is simpler since there are only 2 eigenvalues.

e Elliptic: () = {e!*, e~} for 0 < a < 7.

e Positive hyperbolic : o(y) = {r,r=1} for r > 0.

@ Negative hyperbolic : o(y) = {—r,—r~1} for r > 0.
o Degenerate case: o(y) = {1,1} or {—1,—1}

Note that if A € a(7), then AN € a(+"V). Hence,

Simple orbit Odd cover Even cover
Elliptic Elliptic Elliptic
Positive hyperbolic | Positive hyperbolic | Positive hyperbolic

Negative hyperbolic | Negative hyperbolic | Positive hyperbolic
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Elliptic and hyperbolic orbits in dimension 4

(a) Elliptic (b) Negative hyperbolic (c) Positive hyperbolic

Figure 5: Characteristic multipliers.

A transition between elliptic and hyperbolic happens through A = +1.

Remark

In generic dynamical system, every periodic orbit is hyperbolic. It
means that there is an essential feature of Hamiltonian system
distinguished from the generic dynamical systems.
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Conley-Zehnder index

Let L; be a linearized flow dFl;XH along ~.
After trivialization, this is a path in Sp(2n).

At the points ¢ such that det(L; — Id) = 0, we define a crossing form by
Qi(v) = w|ker(Lt71d) (v, Ltv)~

The Conley-Zehnder index is

1 1
pez(y) = 5SignQo + > SignQ: + 5 SignQ--
det(L;—1d)=0

Note that pcz(y) changes only if 1 € o(Ly).
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Floer homology

The Floer homology is defined by a chain complex (CZ', 9*) where

e CI is generated by Hamiltonian 1-periodic orbits.

@ The generators are graded by ez (7).

e OF is defined by counting the Floer cylinders.

We can define a Floer homology for a certain energy hypersurface
H~1(c), say SH.., whose generators are every periodic orbit and their
multiple covers with energy c.

The Floer homology is a symplectic invariant, and S H, is invariant unless

c passes the critical energy level.
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Bifurcations of Hamiltonian
orbits




Bifurcation

Two vector fields X, Y on W are topologically conjugate if there exists
a homeomorphism F' : W — W which carries the oriented orbits of X to
the ones of Y.

It means that the dynamics of X and Y are essentially the same.

Consider a 1-parameter family of vector fields X; on W. A point s is

@ a robust point if X, X; are topologically conjugate if |s — t| < ¢,

@ a bifurcation point if not.
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Orbit cylinder

Setting. Hamiltonian vector field X on 4-dimensional (W, w)
Consider a periodic orbit v of period 7 at energy level c.
We denote ). for the eigenvalue of L. of v. € H~(c).
Theorem (Orbit cylinder)

If \c # 1, there exists an embedded cylinder

I[:8' % (c—e,c+¢e)— W such that

1 T(=¢) = 7(-).

2. T'(—,c) = v (—) is a periodic orbit with energy ¢'.

3. Under an appropriate choice, Ao changes smoothly along c'.
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Orbit cylinder

Figure 6: Orbit cylinder

Generically, if A\. # 1, we can take a neighborhood of v in W so that the
only periodic orbit contained in the neighborhood with period close to 7
are the ones in the orbit cylinder.

Dongho Lee Bifurcations of Hamiltonian orbits January 22nd, 2026 17/38



Bifurcation of Periodic Orbits

Consider the situation we increase the energy c.

@ ). changes smoothly along c.

@ If Ao, =1, there can be another family of periodic orbits, say ~.,
which is arbitrarily close to 7.

@ On the other hand, the family . might disappear at ¢j.
These phenomena are the bifurcation of periodic orbits.

e If 4/ exists for ¢ < ¢y, we say 7/, disappears at c.

e If 4/ exists for ¢ > ¢y, we say 7/, emerges at ¢g.
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Bifurcation : Some Observations

Let 7. be a family of simple periodic orbit.

o If \;, =1, the bifurcation may occur. In this case, even the core
family 7. may disappear.

o If /\% =1, the bifurcation may occur at 'yé\g. In this case, 'yév cannot

disappear since 7, still exists.

@ The change between elliptic and hyperbolic occurs only if A\, = £1.

= We need to see the cases \V = 1.
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Classification : Observations

Theorem ([Mey70])
Generically, there are 8 types of bifurcations of Hamiltonian system. In
particular, 5 of them are related with the periodic orbits.

@ )\ =1 : Birth-death
@ \ = —1 : Period doubling, murder
e \> =1 or\* =1 : Phantom kiss

e \N =1, N >4 : Emission

Here, we assume that A = exp(2mik/N) and (k,N) = 1.
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Classification : Diagram

We'll see these kinds of diagrams.

energy

- Vertical axis is the energy.

- e is the bifurcation point.

- Each line is a family of periodic
orbits.

- — are elliptic, — are hyperbolic.

- The number (2) is the

approximate period of the orbit
compare to the orbit at the

bifurcation point.
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Birth-death

energy

- At ¢q, a hyperbolic orbit and an
elliptic orbit meets and disappears.

- After ¢y, a non-periodic recurrent
orbit appears, called Pugh
catastrophe.

- [AMT8] called this creation and
annihilation.

Figure 7: Birth-death (A =1)
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Period Doubling

energy

- At cg, an elliptic orbit becomes
negative hyperbolic.

- Its double cover changes from
elliptic to positive hyperbolic.

""""""""""""""""""""""" - A family of elliptic orbits with
period 2 appears.

- The inverse is called period
halving.

- [AMT78] called this subtle doubling

Figure 8: Period doubling (A = —1) and halving.
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Period Doubling
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Figure 9: Example of a period doubling
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Murder

energy

- At c¢g, a negative hyperbolic orbit
becomes elliptic.

- Its double cover changes from
""""""""""""""""""""""" positive hyperbolic to elliptic.

2 - A family of hyperbolic orbits with
period 2 disappears.

- The inverse is called

materialization.

Figure 10: Murder (A = —1)
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Phantom kiss

energy

Figure 11: Phantom kiss (A\* = 1 or
A =1)

This only happens for N = 3, 4.

At ¢g, a family of hyperbolic orbits
of period N disappears, but
emerge right after cg.

The core orbit and its N-th cover
are elliptic.

It might be understood as two
families meets and become
degenerate at one point.

This is also called phantom kiss.
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Emission

energy

- At ¢g, a family of elliptic orbits
and a family of hyperbolic orbits,
both have period N, emerge.

- The core orbit and its N-th cover

are elliptic.
- The inverse is called absorbtion.

- At N = 4, both phantom kiss and
emission can happen, depend on

the ratio of specific terms of the
Figure 12: Emission (\Y =1, return map.
N > 4)
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Relation with Conley-Zehnder index

As c increases, cz(v.) changes only if A, = 1.

If AN =1, poz(vY) might change.

= Change of ucz(7y) and bifurcation occur simultaneously!

Example. Consider the phantom kiss of 72 at ¢q with hyperbolic orbit /.
Passing g, poz(7?) changes by £2. (elliptic — elliptic)

Let's assume pcz(v3 ) = N, poz(v2,) = N +2.

From the invariance of the local Floer homology, we can conclude
oz (%) = N + 1 and they cancel each other.
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Three-body problem




Kepler problem

The Kepler problem describes the motion of an object under the
gravitational force of the other object, defined by a Hamiltonian

E:T*R*\ {0}) =R
1 1
(¢,p) = §|P|2 - m

If £ <0, every orbit is an ellipse with a focus at the origin.
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Three-body problem

The restricted three-body problem describes the motion of a mass-less
body under the gravitational force of two bodies, say E of mass 1 —
(earth) and M of mass p (moon), and is defined by Hamiltonian

© -
lg—M@)| lg—E@)]

1
H(q,p) = 5lpl* -

The motion of E(t) and M(t) are governed by the Kepler problem.

If we assume the Kepler orbit to be circular, we get circular restricted
three-body problem

1 0 L—p
H(q,p) = 5IpI* + (prg2 — q1p2) — - '
(@:p) = 5l + (Pra2 = awp2) = =3 = 55 ~ 7= (2, 0,0)

See [FvK18] or [Cell0] for better understanding.
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Three-body problem

Figure 13: lllustration of the restricted three-body problem
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Hill’s region and Lagrange points

We can re-formulate the Hamiltonian as

Lo M L—p L oo
- a == Ul(q).
2Iql +W+ o 2\pl +U(q)

Hiawp) = 510 - (

We call U(q) effective potential.
For an energy ¢, we have H(q,p) = ciff U(q) < c.
We call {¢ : U(q) < ¢} a Hill's region.

U(q) has 5 critical points, and the topology of Hill's region changes
through these critical energy.

The critical points are called Lagrange points.
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Hill’s region and Lagrange Points

©)

Figure 14: Hill's region for various energies
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Limit case : Rotating Kepler problem

The rotating Kepler problem is the case © = 0, defined by

1 1
H(q,p) = §|P\2 + (P12 — p2q1) — m

Important orbits : these families exists for every energy ¢ < —3/2.

@ Planar circular orbits v+ (retrograde, direct)

@ Vertical collision orbits ., (northern, southern)
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Limit case : Rotating Kepler problem

Figure 15: 4 periodic orbits of the rotating Kepler problem
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Conley-Zehnder indices of rotating Kepler problem

Theorem ([Lee25], ArXiv Preprint)
Let Exy = —0.5(k/1)*/3, ¢ = Ey, +1/\/=2Ex;. Then,

4N -2 if B< @ qq
poz(vy) =9 AN-2—4k if ch 15 <c<df_..
2 if c> chf1

AN +2  if c<cy
poz(vl) = o+ A ’
AN 4+ 2+ 4k if CNtkk < C < CNLE+1k+1

Mcz(%]\i) =4N.

Note. For low energy, these 4 orbits and their multiple covers gives every
generator of SH(T*S?) up to certain degree.
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Bifurcation of the rotating Kepler problem

At ¢if,, an S3-family of orbits emerge at 7" and disappears at g’fl.
k.l y g T+

Index = 18
1244 Ea /

E (Kepler energy)

' i
L L L L
-1.5 -1.0 -0.5 0.0

L
-2.5 -2.0

c (total energy)

Figure 16: Bifurcation of the rotating Kepler problem

This non-genericity occurs because of the strong symmetry of the system.
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Further works

@ Computing of the Conley-Zehnder index and relate this with the
bifurcation of the integrable systems.

@ Analyzing bifurcation behavior of non-integrable systems, in
particular the system related to the three-body problem.

@ Reveal the relation between symmetry-breaking of the system and
the change of bifurcation type.

o Find generic relation between the bifurcation and Conley-Zehnder
index, and moreover the wall-crossing phenomena of the Floer
homology.

Dongho Lee Three-body problem January 22nd, 2026 38/38



Thank you for your attention!
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