
Bifurcation of Periodic Orbits in Hamiltonian

Systems

Dongho Lee

January 22nd, 2026

SNU, QSMS

Presented at Soongsil University

Download slides

https://dhlee-math.github.io/notes/Slides/Bifurcation_SSU_DLee.pdf


Contents

Hamiltonian dynamics and symplectic manifolds

Conley-Zehnder index

Bifurcations of Hamiltonian orbits

Three-body problem and rotating Kepler problem



Introduction



Bifurcation : Toy Example
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Figure 1: Graphs of ft(x) = x(x− 2)(x2 + t)

As t increases, there are changes of the critical points.
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Bifurcation : Real Example

-4 -2 0 2 4

-4

-2

0

2

4

(a) µ < 0
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(c) µ > 0

Figure 2: Trajectory of van der Pol oscillator, ẍ− µ(1− x2)ẋ+ x = 0.

As µ increases, there are changes of the periodic orbits.
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Hamiltonian dynamics and

symplectic manifolds



Classical Mechanics

Classical mechanics is governed by 2nd order ODE on Rn which is given

by Newton’s second law,

F = ma ⇔ −∇V (q) = q̈,

where q ∈ Rn is the position and V is the potential energy.

The mechanical energy is defined by

H = K + V :=
|q̇|2

2
+ V (q),

where K is the kinetic energy.

Law (Classical Energy Conservation)

H is conserved along the trajectory of q determined by force F of the

form −∇V where V = V (q).
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Hamiltonian Dynamics

Idea. Using the energy conservation as a principal law.

Let ω = dp ∧ dq, defined on T ∗Rn.

For H : T ∗Rn → R, we define a Hamiltonian vector field XH by

iXH
ω = −dH.

Then,

The flow of XH preserves H, i.e. XH(H) = 0.

ẋ = XH(x) defines the mechanical system with total energy H.

For example, if H(q, p) = ||p||2/2 + V (q), we have

q̇ = p, ṗ = −∇V.
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Symplectic Manifolds

We can generalize the concept to certain manifolds.

Let ω be a non-degenerate closed 2-form on a manifold W .

Then,

kerω = 0 ⇒ we can define XH by iXH
ω = −dH.

ω(X,X) = 0 ⇒ energy conservation, ω(XH , XH) = dH(XH) = 0.

dω = 0 ⇒ invariance of the physical law, LXH
ω = 0.

We call (W,ω) a symplectic manifold, and (W,ω,H) a Hamiltonian

system.
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Periodic orbits

Periodic orbit is an orbit γ of FlXH
t such that γ(0) = γ(τ) for some τ .

Why is this important?

Invariant sets are building blocks of a dynamical system.

Arnold conjecture : The minimal number of Hamiltonian periodic

orbits are bounded by the sum of Betti numbers of the manifold.

Floer theory : Periodic orbits are generators of HF∗(M), an

important symplectic invariant.

Practical purposes.
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Conley-Zehnder index



Poincaré Section and Return map

Theorem (Poincaré Section)

Let γ be a periodic orbit of X in W and x ∈ γ.

1. There exists a codimension 1 submanifold Y ⊂ W such that x ∈ Y

and is transversal to X.

2. In the case of Hamiltonian flow, we can take Y such that each

Sc = Y ∩H−1(c) is a symplectic submanifold.

We call Y or S a Poincaré section.

We can define the return map by Ψ(y) = FlXτ(y)(y) for y close to x

where τ(y) = min{t > 0 : y ∈ Y }.

In the Hamiltonian setting, Ψ is a symplectomorphism.
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Poincaré Section

Figure 3: A Poincaré section and the return map
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Elliptic and hyperbolic orbits

Let γ(0) = γ(τ) = x and Ψ be a return map.

Then Ψ is (locally) a symplectomorphism, which means ω = Ψ∗ω.

In local coordinates, we can write this condition as

ATΩA = Ω where A = dΨx, Ω =

(
0 Id

−Id 0

)
.

Note

If λ ∈ σ(A) = {eigenvalues of A}, then λ−1, λ̄, λ̄−1 ∈ σ(A).

If |λ| ≠ 1 for any λ ∈ σ(γ) = σ(dΨx), we call γ hyperbolic.

If |λ| = 1 for any λ ∈ σ(γ), we call γ elliptic.
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Elliptic and hyperbolic fixed points

Periodic orbits correspond to the fixed points of the return map.
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(b) Hyperbolic fixed point

Figure 4: Trajectory near the elliptic and hyperbolic fixed points.

Elliptic orbits are stable, while hyperbolic ones are not.

Dongho Lee Conley-Zehnder index January 22nd, 2026 10/38



Elliptic and hyperbolic orbits in dimension 4

If dimM = 4, the situation is simpler since there are only 2 eigenvalues.

Elliptic: σ(γ) = {eiα, e−iα} for 0 < α < π.

Positive hyperbolic : σ(γ) = {r, r−1} for r > 0.

Negative hyperbolic : σ(γ) = {−r,−r−1} for r > 0.

Degenerate case: σ(γ) = {1, 1} or {−1,−1}

Note that if λ ∈ σ(γ), then λN ∈ σ(γN ). Hence,

Simple orbit Odd cover Even cover

Elliptic Elliptic Elliptic

Positive hyperbolic Positive hyperbolic Positive hyperbolic

Negative hyperbolic Negative hyperbolic Positive hyperbolic
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Elliptic and hyperbolic orbits in dimension 4

(a) Elliptic (b) Negative hyperbolic (c) Positive hyperbolic

Figure 5: Characteristic multipliers.

A transition between elliptic and hyperbolic happens through λ = ±1.

Remark

In generic dynamical system, every periodic orbit is hyperbolic. It

means that there is an essential feature of Hamiltonian system

distinguished from the generic dynamical systems.
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Conley-Zehnder index

Let Lt be a linearized flow dF lXH
t along γ.

After trivialization, this is a path in Sp(2n).

At the points t such that det(Lt − Id) = 0, we define a crossing form by

Qt(v) = ω|ker(Lt−Id)(v, L̇tv).

The Conley-Zehnder index is

µCZ(γ) =
1

2
SignQ0 +

∑
det(Lt−Id)=0

SignQt +
1

2
SignQτ .

Note that µCZ(γ) changes only if 1 ∈ σ(Lt).
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Floer homology

The Floer homology is defined by a chain complex (CF
∗ , ∂F ) where

CF
∗ is generated by Hamiltonian 1-periodic orbits.

The generators are graded by µCZ(γ).

∂F is defined by counting the Floer cylinders.

We can define a Floer homology for a certain energy hypersurface

H−1(c), say SHc, whose generators are every periodic orbit and their

multiple covers with energy c.

The Floer homology is a symplectic invariant, and SHc is invariant unless

c passes the critical energy level.
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Bifurcations of Hamiltonian

orbits



Bifurcation

Two vector fields X,Y on W are topologically conjugate if there exists

a homeomorphism F : W → W which carries the oriented orbits of X to

the ones of Y .

It means that the dynamics of X and Y are essentially the same.

Consider a 1-parameter family of vector fields Xt on W . A point s is

a robust point if Xs, Xt are topologically conjugate if |s− t| < ε,

a bifurcation point if not.

Dongho Lee Bifurcations of Hamiltonian orbits January 22nd, 2026 15/38



Orbit cylinder

Setting. Hamiltonian vector field XH on 4-dimensional (W,ω).

Consider a periodic orbit γ of period τ at energy level c.

We denote λc for the eigenvalue of Lτ of γc ⊂ H−1(c).

Theorem (Orbit cylinder)

If λc ̸= 1, there exists an embedded cylinder

Γ : S1 × (c− ε, c+ ε) → W such that

1. Γ(−, c) = γ(−).

2. Γ(−, c′) = γc′(−) is a periodic orbit with energy c′.

3. Under an appropriate choice, λc′ changes smoothly along c′.
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Orbit cylinder

Figure 6: Orbit cylinder

Generically, if λc ̸= 1, we can take a neighborhood of γ in W so that the

only periodic orbit contained in the neighborhood with period close to τ

are the ones in the orbit cylinder.
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Bifurcation of Periodic Orbits

Consider the situation we increase the energy c.

λc changes smoothly along c.

If λc0 = 1, there can be another family of periodic orbits, say γ′
c,

which is arbitrarily close to γc0 .

On the other hand, the family γc might disappear at c0.

These phenomena are the bifurcation of periodic orbits.

If γ′
c exists for c < c0, we say γ′

c disappears at c0.

If γ′
c exists for c > c0, we say γ′

c emerges at c0.
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Bifurcation : Some Observations

Let γc be a family of simple periodic orbit.

If λc0 = 1, the bifurcation may occur. In this case, even the core

family γc may disappear.

If λN
c0 = 1, the bifurcation may occur at γN

c0 . In this case, γN
c cannot

disappear since γc still exists.

The change between elliptic and hyperbolic occurs only if λc = ±1.

⇒ We need to see the cases λN = 1.
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Classification : Observations

Theorem ([Mey70])

Generically, there are 8 types of bifurcations of Hamiltonian system. In

particular, 5 of them are related with the periodic orbits.

λ = 1 : Birth-death

λ = −1 : Period doubling, murder

λ3 = 1 or λ4 = 1 : Phantom kiss

λN = 1, N ≥ 4 : Emission

Here, we assume that λ = exp(2πik/N) and (k,N) = 1.
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Classification : Diagram

We’ll see these kinds of diagrams.

2

energy - Vertical axis is the energy.

- • is the bifurcation point.

- Each line is a family of periodic

orbits.

- — are elliptic, — are hyperbolic.

- The number (2) is the

approximate period of the orbit

compare to the orbit at the

bifurcation point.
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Birth-death

1 1

energy

Figure 7: Birth-death (λ = 1)

- At c0, a hyperbolic orbit and an

elliptic orbit meets and disappears.

- After c0, a non-periodic recurrent

orbit appears, called Pugh

catastrophe.

- [AM78] called this creation and

annihilation.
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Period Doubling

2

energy

Figure 8: Period doubling (λ = −1)

- At c0, an elliptic orbit becomes

negative hyperbolic.

- Its double cover changes from

elliptic to positive hyperbolic.

- A family of elliptic orbits with

period 2 appears.

- The inverse is called period

halving.

- [AM78] called this subtle doubling

and halving.
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Period Doubling

Figure 9: Example of a period doubling
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Murder

2

energy

Figure 10: Murder (λ = −1)

- At c0, a negative hyperbolic orbit

becomes elliptic.

- Its double cover changes from

positive hyperbolic to elliptic.

- A family of hyperbolic orbits with

period 2 disappears.

- The inverse is called

materialization.
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Phantom kiss

3

3

energy

Figure 11: Phantom kiss (λ3 = 1 or

λ4 = 1)

- This only happens for N = 3, 4.

- At c0, a family of hyperbolic orbits

of period N disappears, but

emerge right after c0.

- The core orbit and its N -th cover

are elliptic.

- It might be understood as two

families meets and become

degenerate at one point.

- This is also called phantom kiss.
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Emission

N N

energy

Figure 12: Emission (λN = 1,

N ≥ 4)

- At c0, a family of elliptic orbits

and a family of hyperbolic orbits,

both have period N , emerge.

- The core orbit and its N -th cover

are elliptic.

- The inverse is called absorbtion.

- At N = 4, both phantom kiss and

emission can happen, depend on

the ratio of specific terms of the

return map.

Dongho Lee Bifurcations of Hamiltonian orbits January 22nd, 2026 27/38



Relation with Conley-Zehnder index

As c increases, µCZ(γc) changes only if λc = 1.

If λN
c = 1, µCZ(γ

N
c ) might change.

⇒ Change of µCZ(γ) and bifurcation occur simultaneously!

Example. Consider the phantom kiss of γ3 at c0 with hyperbolic orbit γ′.

Passing c0, µCZ(γ
3) changes by ±2. (elliptic → elliptic)

Let’s assume µCZ(γ
3
c−) = N , µCZ(γ

3
c+) = N + 2.

From the invariance of the local Floer homology, we can conclude

µCZ(γ
′) = N + 1 and they cancel each other.
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Three-body problem



Kepler problem

The Kepler problem describes the motion of an object under the

gravitational force of the other object, defined by a Hamiltonian

E : T ∗(R3 \ {0}) → R

(q, p) 7→ 1

2
|p|2 − 1

|q|
.

If E < 0, every orbit is an ellipse with a focus at the origin.
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Three-body problem

The restricted three-body problem describes the motion of a mass-less

body under the gravitational force of two bodies, say E of mass 1− µ

(earth) and M of mass µ (moon), and is defined by Hamiltonian

H(q, p) =
1

2
|p|2 − µ

|q −M(t)|
− 1− µ

|q − E(t)|
.

The motion of E(t) and M(t) are governed by the Kepler problem.

If we assume the Kepler orbit to be circular, we get circular restricted

three-body problem

H(q, p) =
1

2
|p|2 + (p1q2 − q1p2)−

µ

|q − (1− µ, 0, 0)|
− 1− µ

|q − (−µ, 0, 0)|
.

See [FvK18] or [Cel10] for better understanding.
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Three-body problem

Earth Moon

Satellite

-0.5 0.5

-0.5

0.5

Figure 13: Illustration of the restricted three-body problem
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Hill’s region and Lagrange points

We can re-formulate the Hamiltonian as

H(q, p) =
1

2
|p̃|2 −

(
1

2
|q|2 + µ

rM
+

1− µ

rE

)
:=

1

2
|p̃|2 + U(q).

We call U(q) effective potential.

For an energy c, we have H(q, p) = c iff U(q) ≤ c.

We call {q : U(q) ≤ c} a Hill’s region.

U(q) has 5 critical points, and the topology of Hill’s region changes

through these critical energy.

The critical points are called Lagrange points.
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Hill’s region and Lagrange Points
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Figure 14: Hill’s region for various energies
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Limit case : Rotating Kepler problem

The rotating Kepler problem is the case µ = 0, defined by

H(q, p) =
1

2
|p|2 + (p1q2 − p2q1)−

1

|q|
.

Important orbits : these families exists for every energy c < −3/2.

Planar circular orbits γ± (retrograde, direct)

Vertical collision orbits γc± (northern, southern)
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Limit case : Rotating Kepler problem

Figure 15: 4 periodic orbits of the rotating Kepler problem
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Conley-Zehnder indices of rotating Kepler problem

Theorem ([Lee25], ArXiv Preprint)

Let Ek,l = −0.5(k/l)2/3, c±k,l = Ek,l ± 1/
√
−2Ek,l. Then,

µCZ(γ
N
+ ) =


4N − 2 if c < c+N−1,1

4N − 2− 4k if c+N−k+1,k−1 < c < c+N−k,k

2 if c > c+1,N−1

,

µCZ(γ
N
− ) =

{
4N + 2 if c < c−N+1,1

4N + 2 + 4k if c+N+k,k < c < c+N+k+1,k+1

,

µCZ(γ
N
c±) = 4N.

Note. For low energy, these 4 orbits and their multiple covers gives every

generator of SH(T ∗S3) up to certain degree.
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Bifurcation of the rotating Kepler problem

At c±k,l, an S3-family of orbits emerge at γk+l
+ and disappears at gk−l

− .
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Figure 16: Bifurcation of the rotating Kepler problem

This non-genericity occurs because of the strong symmetry of the system.
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Further works

Computing of the Conley-Zehnder index and relate this with the

bifurcation of the integrable systems.

Analyzing bifurcation behavior of non-integrable systems, in

particular the system related to the three-body problem.

Reveal the relation between symmetry-breaking of the system and

the change of bifurcation type.

Find generic relation between the bifurcation and Conley-Zehnder

index, and moreover the wall-crossing phenomena of the Floer

homology.
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Thank you for your attention!
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