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This is graph of ft(x) = x(x2 + t)(x − 1) for t = −1, −1/2, 0 and 1.
See the change of critical points.
• t < 0, two minima (•) and one maximum. (•)
• t = 0, one minimum and one maximum meets at the inflection point. (•)
• t > 0, one minimum survives. (•)
This phenomenom also happens for periodic orbits.

Bifurcation of Hamiltonian Periodic Orbits
Let H : W → R be a Hamiltonian and γc ⊂ H−1(c) be a periodic orbit with energy c .
We call γc is non-degenerate if the linearized return map on the Poincaré section doesn’t
have 1 as an eigenvalue.
(Similar to critical point x of a function f such that f ′′(x) ̸= 0.)
If γc is non-degenerate, there exists a family of periodic orbits near energy c ,

Γ = {(γc ′, c ′) : γc ′ ⊂ H−1(c ′), c − ε < c ′ < c + ε}.

Topologically, Γ is a cylinder, i.e., Γ : S1 × (c − ε, c + ε) → W .
If γc is degenerate, bifurcation might happen: γc vanishes or another orbits are born.
Generically, there are 8 types of bifurcations of Hamiltonian periodic orbits. ([AM78])
Another kind of bifurcation may happen if there is enough symmetry. (e.g. RKP)

Conley-Zehnder Index and Floer Homology
The Conley-Zehnder index µCZ(γ) is an integer associated to the periodic orbit. ([CZ83])
If the energy hyperplane H−1(c) has a contact structure, the symplectic homology
SH∗(Wc), generated by periodic orbits, can be defined for each energy c . ([FH94], [CFH95])
The circular restricted three-body problem have such property. ([AFvKP12], [CJK20])
• SH∗(Wc) is invariant of c , until c passes a critical energy.
• The Conley-Zehnder index gives a grading to SH∗(Wc).
It means that the indices of all periodic orbits are globally controlled.
Computing tool : Local Floer homology, Morse-Bott spectral sequence.

Index and Bifurcation
µCZ(γc) is invariant while γc is non-degenerate, and might change when γc degenerates.
In this case, the change of µCZ(γc) is related to the index of other orbits.
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Toy model of a bifurcation
Periodic orbits with same energy c has the
same y -coordinates.
There’s only one orbit • for low c .
When • passes degeneracy (•), new orbits
(•, •) are born.
SH(W ) generated by • at low energy and
•, •, • at higher energy must coincide, so
the Conley-Zehnder indices of these orbits
are related.
This happens until c passes critical energy.

Periodic Orbits of Kepler Problem
Kepler problem is defined by Hamiltonian E : T ∗R3 \ {0} → R,

E (q, p) = |p|2

2 − 1
|q|

.

If E < 0, every orbit is an ellipse with one focus at the origin.
We resolve the singularity at 0 by include collision orbits via Moser regularization.
The orbits have two invariants: angular momentum L and Laplace-Runge-Lenz vector

A = p × L − q
|q|

.

The space of periodic orbits with Kepler energy E can be parametrized by a map
Φ : ME → S2 × S2

γ 7→ (
√

−2EL − A,
√

−2E + A)

γ- γ+

γc +

γc -

S3 - family

S1

T2

collision and vertical

planar and circular
L3

-A3

The diagram is an image of the map
ME = S2 × S2 → R2

γ = (x , y) → 1
2(x3 + y3, x3 − y3).

Four vertices correspond to the retrograde,
direct and vertical collision orbits.
The family of orbits with same L3 forms
S3-family.
The space is same as the space of unit
geodesics of round S3.

Periodic Orbits of Rotating Kepler Problem

The rotating Kepler problem is defined by Hamiltonian

H(q, p) = |p|2

2 − 1
|q|

+ (p1q2 − p2q1) = E + L3.

This is a limit µ = 0 of the circular restricted three-body problem (CRTBP).

Since {E , L3} = 0, the orbits which is invariant under the rotation
along q3-axis are always periodic.
Planar circular (◦): retrograde (γ+) and direct (γ−).
Vertical collision (−): northern (γc+) and southern (γc−).
These are non-degenerate for generic energy c < −1.5.
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For Ek ,l = −0.5(k/l)2/3 for k, l = 1, 2, · · · , the Kepler flow and
rotation resonate and every orbit becomes periodic.
These orbits form S3-family Σk ,l for each Ek ,l .
At these energies, γ± and γc± become degenererate.
Σk ,l is born at γk−l

− and vanishes at γk+l
+ .

• The simple retrograde orbit doesn’t bifurcate if c < −1.5.
• N-th cover of retrograde orbit bifurcate (N − 1)-times.
• Every cover of direct orbit bifurcate infinitely many times.
• Vertical collision orbits don’t bifurcate, due to too much symmetry.
[AFFvK13] analyzed the planar case.
This is also observed in CRTBP, but there are much less symmetry.
Σk ,l become a finite set of discrete orbits, and the vertical collision also bifurcates.

Conley-Zehnder Indices of Rotating Kepler Problem
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At generic energy c , the energy hyperplane H−1(c)
(· · · ) contains following orbits:
• 4 non-degenerate orbits: γ± and γc±.
• Σk ,l-family for each Ek ,l such that

Ek ,l − (−2Ek ,l)−1/2 < c < Ek ,l + (−2Ek ,l)−1/2.

• These are all generators of SHS1,+(T ∗S3), and their
indices can be investigated with local Floer homology.

• SHS1,+(T ∗S3) has one generator at degree 2 and
two generators at each degree 2k ≥ 4.

Theorem ([Lee25], ArXiv Preprint)
Let c±

k ,l = Ek ,l ± (−2Ek ,l)−1/2, and denote N-th cover of orbit γ by γN .
• µCZ(γN

+) = 4N − 2 for c < c+
N−1,1, and decreases by 4 each time c passes c+

N−k ,k .
• µCZ(γN

−) = 4N + 2 for c < c−
N+1,1, and increases by 4 each time c passes c−

N+k ,k .
• µCZ(γN

c±
) = 4N for any c < −1.5.

• µRS(Σk ,l) = 4k − 1/2.
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This behavior can be analyzed via local Floer homology and
Morse-Bott spectral sequence.
c passes c−

k ,l : µCZ(γk+l
− ) increases by 4, Σk ,l is born.

c passes c+
k ,l : µCZ(γk−l

+ ) decreases by 4, Σk ,l vanishes.
The change of µCZ(γN

±) must change SH∗(W ), but Σk ,l
corrects the difference.

Discussion : Finding Periodic Orbits
[AFvK+] analyzed Hill’s lunar problem in this framework with numerical computation.
Goal: Apply this framework to analyze the periodic orbits of circular restricted three-body
problem, and other interesting systems.
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